

JOHNS ENVIRONMENTAL

## final report

Project code:
Prepared by:

Date submitted:
August 2012

PUBLISHED BY
Meat \& Livestock Australia Limited
Locked Bag 991
NORTH SYDNEY NSW 2059

## Demonstration of Covered Anaerobic Pond Technology

This is an MLA Donor Company funded project.
Meat \& Livestock Australia and the MLA Donor Company acknowledge the matching funds provided by the Australian Government and contributions from the Australian Meat Processor Corporation to support the research and development detailed in this publication.

[^0]
#### Abstract

Capturing biogas from covered anaerobic lagoons (CALs) provides a valuable fuel source and greatly reduces carbon emissions. This project aimed to increase knowledge on the start-up and normal operating performance of covered anaerobic lagoons (CAL) so as encourage their uptake by the red meat industry.

CAL performance was assessed by intensive monitoring of the 2.7 ML CAL at JBS Australia's King Island facility for 7 months from commissioning. The CAL started up successfully and showed steady state operation within 6 months. The results show biogas production and quality was affected significantly by many factors. One of the measures used to successfully gauge the health of the CAL was the ratio of volatile fatty acids to total alkalinity. There is a wealth of valuable insight in this report.


## Executive summary

Anaerobic wastewater treatment has a long history in the Australian red meat industry. Covering anaerobic ponds with a synthetic cover to capture valuable methane containing biogas offers a means by which the industry can retain the cost-effectiveness of anaerobic ponds while eliminating the greenhouse emissions associated with methane emissions. This project aimed to increase knowledge on the start-up and normal operating performance of covered anaerobic lagoons (CAL) so as encourage their uptake by the red meat industry.

A 2.7 ML CAL was constructed during 2011 at the iconic King Island beef processing facility of JBS Australia with assistance from RIRDC funding. The CAL represented an important component of a new greenfield wastewater treatment plant designed by Johns Environmental. Important components of the CAL included a rotary wedgewire screen for pre-treatment, the 2 mm HDPE liner and cover (Fabtech), a sludge withdrawal system for periodic sludge removal during CAL operation (Johns Environmental) and a biogas train that included a shrouded candlestick flare to incinerate the biogas (ABM).

Monitoring of the CAL performance during the startup and normal operation phases was funded under a PIP grant. The CAL was commissioned on the $12^{\text {th }}$ of December 2011 and was intensively monitored until $7^{\text {th }}$ July 2012. Online instruments collected information on the wastewater feed flow and biogas flowrate, methane concentration and CAL gas pressure. Field and laboratory analysis of the wastewater feed and CAL discharge was performed twice weekly during the investigation period. Other information collected further investigated the crust and sludge build-up, wastewater feed composition and biogas composition.

The CAL achieved design performance and after 6 months of operation consistently produces $85 \% \mathrm{BOD}_{5}$ removal and $5,200 \mathrm{~m}^{3}$ of biogas production per week at an average $70 \%$ $\mathrm{v} / \mathrm{v}$ methane concentration.

Start-up of the CAL required approximately three months to achieve consistent performance. Biogas production reflected the overall anaerobic process efficiency. From start-up, when the anaerobic bacteria flora was being established, there was no significant biogas production for 30 days. The biogas flowrate and methane concentration subsequently increased as the system developed.

During normal operation, there was relatively uniform biogas production over the 7 days of the week despite the 5 day facility operation with some variation in methane content of the biogas during production days. Other biogas components were carbon dioxide, nitrogen, argon, oxygen and hydrogen sulphide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$. Levels of $\mathrm{H}_{2} \mathrm{~S}$ were low (typically less than 200 $\mathrm{ppm})$, although early morning values were as high as $2,000 \mathrm{ppm}(0.2 \% \mathrm{v} / \mathrm{v})$.

A critical feature of CAL performance is the need to protect the pond from shocks which upset bacterial activity. This is critical where there is reliance on biogas for cogeneration, or as boiler fuel. A major shock was experienced during the project, which adversely impacted biogas production and CAL performance.

Solids accumulation in the CAL was evident within 6 months of CAL operation, although the majority of these are biological in nature and essential for CAL performance. Ten $\mathrm{m}^{3}$ of sludge was successfully extracted from the CAL through the sludge pipework and exhibited a solids concentration of over $2 \%$ by weight. Some crust build-up was evident under the cover despite the low feed oil and grease concentrations. This remains an important issue for CAL longevity.

## Contents

Page
1 Background ..... 5
1.1 Introduction ..... 5
1.2 Site Description ..... 5
1.3 Site Production ..... 7
1.4 Description of CAL \& Biogas System ..... 7
1.4.1 Wastewater System ..... 7
1.4.2 Design Wastewater Flows ..... 7
1.4.3 Design Wastewater Composition .....  8
1.4.4 Design Parameters for the CAL .....  8
1.4.5 CAL Detail ..... 9
1.4.6 Biogas Train ..... 10
1.4.7 Sludge Removal ..... 11
2 Project objectives ..... 13
3 Methodology ..... 14
3.1 CAL Start-up ..... 14
3.2 Wastewater Monitoring ..... 14
3.2.1 Wastewater Flow ..... 14
3.2.2 Wastewater Characterisation ..... 15
3.3 Biogas Monitoring ..... 16
3.3.1 Biogas Flow ..... 16
3.3.2 Biogas Characterisation ..... 17
3.4 Sludge \& Crust Analysis ..... 18
3.4.1 Sludge ..... 18
3.4.2 Crust ..... 19
4 Start-up Dynamics ..... 20
4.1 Biogas production ..... 20
4.2 Start up period ..... 21
4.2.1 Acidogen start-up period. ..... 21
4.2.2 Methanogen start-up period ..... 24
4.3 Influence of shocks (perturbations) ..... 26
4.4 Microbial Stress Indicators ..... 28
4.5 Pond Temperature ..... 29
5 Normal Operating Performance ..... 30
5.1 Biogas production ..... 30
5.1.1 Biogas flowrate ..... 30
5.1.2 Biogas methane composition ..... 31
5.1.3 Biogas composition - other components ..... 33
5.2 Contaminant Removal from the Wastewater. ..... 36
5.2.1 Influent Composition ..... 36
5.2.2 COD and $\mathrm{BOD}_{5}$ removal by the CAL ..... 39
5.2.3 TSS and Oil \& Grease Removal ..... 40
5.2.4 Feed Flow ..... 41
5.3 Estimate of Biogas Production. ..... 42
6 Crust \& Solids accumulation ..... 43
6.1 Crust Build-up ..... 43
6.2 Sludge Accumulation ..... 44
7 Conclusions ..... 46
8 Recommendations ..... 47

## 1 Background

### 1.1 Introduction

Anaerobic ponds (without synthetic covers) have long been the cornerstone of meat processing wastewater treatment systems. They provide robust and cost-effective removal of organic loads and their natural tendency to form floating crusts helped minimise odour emissions. However the large quantity of methane-rich biogas emitted from these ponds forms a significant contribution towards direct Scope 1 greenhouse gas (GHG) emissions from meat processing facilities and represents lost fuel value.

Many proprietary high rate anaerobic systems have been installed in industrial wastewater systems and offer the capacity to capture the biogas. Unfortunately these have a poor record with meat processing wastewater largely because of the tendency of high oil \& grease and total suspended solids concentrations to interfere with microbial granulation, which is generally critical for successful high rate system function.

The emergence of CALs provides a more appropriate fit for meat processing wastewater. Considerable unknowns and risks exist for CAL technology implementation in the meat processing sector including:

- unknown start-up behaviour of anaerobic systems at green field sites;
- limited data regarding biogas production rates and quality;
- the danger of crust accumulation under the cover causing mechanical damage and eventually cover failure.

The King Island meat processing site owned by JBS Australia Pty Ltd. (JBS) was selected as an ideal demonstration site due to its unique environment. The Rural Industries Research and Development Corporation (RIRDC) contributed capital funding to assist JBS to construct a new CAL with instrumentation and technologies required to demonstrate and monitor its effectiveness. The Australian Meat Processor Corporation (AMPC), Meat \& Livestock Australia (MLA) and JBS provided funding to conduct a 9 month research PIP program to monitor the startup and normal operation of the CAL.

This demonstration site and the associated monitoring research project is a first step in ensuring that the red meat processing sector is best placed to develop a suite of strategies and tools able to equip the industry to meet the challenges faced in responding to climate change and to capitalise on opportunities that invariably accompany fundamental change of this magnitude.

### 1.2 Site Description

King Island, located between Victoria and Tasmania, has a population of approximately 1300 residents. There are about 85,000 head of cattle on the island being $30 \%$ dairy and $70 \%$ beef. The King Island Abattoir facility was originally built by the Tasmanian Government in the 1950's. In May 2008, JBS acquired the King Island site which currently employs 85 people. JBS have 10 abattoirs throughout Australia, with the King Island site contributing to approximately $1.6 \%$ of the weekly beef processing capacity.


The King Island facility is located at Morrison Avenue, Loorara, King Island approximately 7 km north of Currie and adjacent to the airport (Photo 1). The abattoir originally loaded $1 / 4$ sides of beef into DC3's at the side fence direct to the airstrip beside the plant, shipping them for processing at their Victorian plants. The location of the airport adjacent to the WWTP has provided some unique challenges.


Photo 1: Aerial Photo of King Island site (Google Earth 2012)

### 1.3 Site Production

The abattoir comprises a beef processing floor which typically operates 5 days/week, 235 days/year processing up to 180 head of cattle per day, on a single kill shift basis with 1 boning shift. There exists a full range of ancillary operations including rendering (HTR), boning and offal and intestine processing. Hides from the processed cattle are dry salted for off-site transport.

Although the abattoir is small relative to most in Australia, it is representative of the larger facilities in being fully integrated and having a full suite of ancillary operations.

### 1.4 Description of CAL \& Biogas System

The CAL was designed by Johns Environmental Pty Ltd [JEPL] as the first of several ponds in a greenfield pond-based wastewater treatment system. The design reflects 20 years experience of the company with anaerobic ponds in the meat processing industry. This section gives an overview of the CAL design for the JBS Australia King Island facility.

### 1.4.1 Wastewater System

The CAL formed one part of a greenfield WWTP comprising:

- 1 new raw wastewater pump pit, pumps and rising main;
- A new rotary screen to provide fine and gross solids removal. An old DAF was decommissioned and not replaced due to relatively low oil \& grease levels in the raw wastewater;
- 1 new 2.7 ML CAL with biogas train and flare;
- Downstream aerated pond with ancillary settle basin and two aerobic polishing ponds.

This project focussed on the new CAL.

### 1.4.2 Design Wastewater Flows

The major flow is generated on production days. The CAL was designed to handle a production design average flow of $290 \mathrm{~kL} /$ day Mon-Fri. This includes some wet weather capture.

### 1.4.3 Design Wastewater Composition

The wastewater stream design composition post screen and prior to pond treatment is provided in Table 1. These design values are derived from comprehensive testing conducted by JBS during May - July 2010 with samples analysed by EML (Melbourne). The wastewater is typical of many integrated beef processing plants with the exception of low oil \& grease concentrations and a high TDS of $5,200 \mathrm{mg} / \mathrm{l}$.

Table 1. Design wastewater composition

| Parameter | Units |  |
| :--- | :--- | :--- |
| Total COD | $\mathrm{mg} / \mathrm{l}$ | 7,250 |
| $\mathrm{BOD}_{5}$ | $\mathrm{mg} / \mathrm{l}$ | 3,000 |
| TSS | $\mathrm{mg} / \mathrm{l}$ | 2,000 |
| O\&G | $\mathrm{mg} / \mathrm{l}$ | 120 |
| TN | $\mathrm{mg} / \mathrm{l}$ | 450 |
| Ammonia-N | $\mathrm{mg} / \mathrm{l}$ | 250 |
| TP | $\mathrm{mg} / \mathrm{l}$ | 45 |
| TDS | $\mathrm{mg} / \mathrm{l}$ | 5,200 |
| Calcium | $\mathrm{mg} / \mathrm{l}$ | 115 |
| Magnesium | $\mathrm{mg} / \mathrm{l}$ | 20 |
| Sodium | $\mathrm{mg} / \mathrm{l}$ | 1,500 |
| Chloride | $\mathrm{mg} / \mathrm{l}$ | 1,800 |
| Sulphate | $\mathrm{mg} / \mathrm{l}$ | 65 |
| SAR (calculated) |  | 34 |
| EC | $\mu \mathrm{c} / \mathrm{cm}$ | 8,500 |
| Temp | ${ }^{\circ} \mathrm{C}$ | $30-35$ |
| pH |  | 7.2 |

Notes See Abbreviations section for description of parameters.

### 1.4.4 Design Parameters for the CAL

The design of modern CALs is a compromise between a suitable hydraulic retention time (HRT) and organic loading (OLR) to achieve the desired outcomes which may include:

- Reduction of organic concentrations $\left(\mathrm{BOD}_{5}, \mathrm{COD}\right)$ to levels commensurate with values desired for subsequent treatment operations,
- Maximal removal of organic load to maximise energy-rich biogas capture,
- Minimisation of sludge deposition in the CAL, and
- Robust CAL operation without pathological conditions, especially microbial foaming which can enter biogas piping and render the system inoperable.
Consequently, there is no one set of HRT and OLR values that can be universally applied for meat processing plants - each site needs a customised outcome.

Key design parameters and dimensions for the CAL at King Island are given in Table 2. The pond has an average HRT of 13 days and a volumetric BOD loading rate of $0.24 \mathrm{~kg} / \mathrm{m}^{3} /$ day at the design load. The design BOD removal is $85 \%$ to minimise organic load on the downstream ponds. The flare was sized to handle a peak gas flow of $50 \mathrm{~m}^{3} / \mathrm{hour}$ of biogas containing $70 \% \mathrm{v} / \mathrm{v} /$ methane. However, actual design biogas flow is considerably less than this value.

Table 2. Design parameters for the CAL.

| Parameter | Units | Design |
| :--- | :--- | :--- |
| Design Flow | $\mathrm{kL} / \mathrm{day}$ | 290 |
| BOD load | $\mathrm{kg} / \mathrm{d}$ | 870 |
| Pond depth (TWL) | m | 5.0 |
| Wall batter | $\mathrm{w}: \mathrm{h}$ | 2.5 |
| Pond Volume (TWL) | $\mathrm{m}^{3}$ | 2,700 |
| Design HRT | day | 13 |
| Volumetric loading rate | $\mathrm{kgBOD} / \mathrm{m}^{3} . \mathrm{d}$ | 0.24 |
| Design BOD removal | $\%$ | 85 |
| BOD ${ }_{5}$ exit concentration | $\mathrm{mg} / \mathrm{l}$ | 450 |
| TOW length | m | 50.0 |
| TOW width | m | 26.0 |
| Base length | m | 28.0 |
| Base width | m | 4.0 |
| Freeboard | m | 0.5 |
| Design biogas production | $\mathrm{m}^{3} / \mathrm{day}$ | $600(7$ day/week) |
| Design methane content | $\% \mathrm{v} / \mathrm{v}$ | 70 |
| Design flare biogas flow | $\mathrm{m}^{3} / \mathrm{h}$ | 50 |

Notes: TWL - top water level; HRT - hydraulic retention time.

### 1.4.5 CAL Detail

The CAL has one inlet pipe and one outlet (Photo 2) both in 160 mm OD HDPE. The inlet is centred on the longitudinal centre line at the north end and empties at 1 metre below top water level. The outlet is positioned off-centre at the South end of the CAL. A weir in the pre-cast concrete outlet pit sets the liquid depth in the CAL at 5 metres.


Photo 2: King Island CAL

The cover was designed and fabricated by Fabtech (Wingfield, SA) and comprises 2.0 mm HDPE anchored in a trench on the perimeter of the CAL (Photo 3). The CAL is lined with the same material to prevent leakage into the shallow groundwater. The cover is equipped with:

- Central walkway of textured HDPE welded onto the cover;
- 2 sample ports with bolted flange closures - one near the inlet, the other nearer the outlet;
- 4 emergency vent PVC spears designed to release overpressure, and
- An "H" shaped stormwater removal weighting system to capture stormwater (see Photo 3) with a float valve drawoff near the outlet to a centrifugal pump located adjacent to the outlet weir and discharge into it (Photo 4).


Photo 3: CAL cover


Photo 4: CAL showing stormwater removal

### 1.4.6 Biogas Train

The biogas train and flare was fabricated by ABM (Carrum Downs, VIC). A shrouded flare was selected since the location is reasonably remote and very wind exposed. The biogas system is pictured in Photo 5 and consisted of:

- Knock out pot for condensate capture with provision to isolate it for maintenance;
- A blower to feed the biogas to the flare;
- Emergency valve shutdown and flame arrestor;
- Shrouded flare with pilot able to be lit from the 9 kg gas bottle;
- Metering of biogas flow (FCI ST51 meter) and methane content (Draeger polytron analyser). These data were logged to the facility SCADA in addition to operational flare information.
- A pressure transducer to measure gas pressure under the CAL cover. This pressure was used to control flare burn rate settings.


Photo 5: Biogas train

The original intent for JBS was to run a small ( 30 kWe ) gas engine, but the decision to install this has been put on hold.

### 1.4.7 Sludge Removal

Provision was made for sludge removal via a single 160 mm OD HDPE sludge extraction pipe positioned longitundinally down the centre of the pond base. The pipe was capped at the north end and exited horizontally through a penetration in the liner at the south end (Photo 2). This end performed a $90^{\circ}$ bend to the vertical and terminated at ground level in an upstand with camlock and cap fitting to allow connection to a sludge pump or truck. The upstand was embedded in a concrete slab to minimise movement during pumping (Photo 6).


Photo 6: Sludge pipework upstand


Photo 7: Sludge pipework weights

The pipe was elevated approximately 200 mm off the CAL base by a series of 160 mm OD concrete-filled weights to minimise movement of the pipe and to negate its buoyancy if filled with biogas. The weights were capped water tight with HDPE caps to prevent concrete erosion in the slightly acidic conditions in the CAL (see Photo 7) and held in place by straps welded to a HDPE wear strip.

The pipe ( 24 m length on the pond base) was drilled with $16 \times 30 \mathrm{~mm}$ diameter holes for sludge entry. The holes were on alternate sides of the pipe and positioned to avoid the weights. The hole spacings increased as the distance to the sludge discharge point reduced to avoid rat-holing as much as possible.

## 2 Project objectives

The project goal was to demonstrate the operation of covered anaerobic pond technology to drive the uptake in Australian meat processing industry.

The project objectives were to:

- Collect and analyse CAL data from a rigorous monitoring program over a 9 month period. The data sought to capture two critical stages of CAL operation:
- Start-up phase. This can be reasonably lengthy, especially for greenfield sites. There are no publically available data regarding this period for meat processing ponds;
- Normal operation. Of special interest is the impact of the usual 5 day on/ 2 day off processing week on pond operation and biogas production and quality.

This data will help to reduce the uncertainties, risk and cost of installing methane recovery and use systems in the red meat processing industry.

- Investigate sludge accumulation and crust build up over the investigation period.
- Communicate the benefits of methane recovery and use as a clean energy source through final deliverables.


## 3 Methodology

### 3.1 CAL Start-up

Figure 1 outlines the timing of the construction and operation phases of the project. There were extensive delays due to wet weather during excavation.

Cover installation is preferably conducted on a filled pond. For greenfield sites this is a challenge since the good quality water preferred for filling (such as treated effluent) is not readily available and potable water is expensive. At King Island the pond was initially filled in November 2011 with a mix of bore water and raw wastewater. No difficulties were experienced using this mix.

Commissioning was initiated by adding the full wastewater flow into the CAL on the $13^{\text {th }}$ December 2011. The entire wastewater flow continued to enter the CAL from this day onwards. No inoculum or sludge was added to assist startup due to the remoteness of the site and the absence of other suitable wastewater treatment systems on the island.


Figure 1: CAL start up time line

### 3.2 Wastewater Monitoring

Wastewater monitoring enabled the characterisation of the effluent flow and quality entering and leaving the CAL.

### 3.2.1 Wastewater Flow

Wastewater flow into the CAL was measured on-line using a Siemens magflow meter installed on the rising main from pump station 1 to the new rotating drum screen upstream of the CAL (Photo 8). The flowmeter recorded instantaneous and totalized flow and communicated with the plant's SCADA system. JBS provided JEPL the daily raw wastewater flows entering the CAL, daily SCADA output and daily production information.


Photo 8: Screening and instrumentation upstream of CAL

### 3.2.2 Wastewater Characterisation

Readily accessible sampling points at the inlet and outlet of the CAL were an integral feature of the design. The inlet sampling point (Photo 9 ) is a ball valve directly prior to the CAL inlet. The outlet sampling point (Photo 10) is the weir overflow between the CAL and the next treatment pond. An access point for sampling was fitted into the galvanised steel grate enclosing the outlet pit. Note that the access point was sized to prevent human entry into the pit, due to its hazardous nature.


Photo 9: CAL inlet sampling point


Photo 10: CAL outlet sampling point

Wastewater feed and CAL discharge composition was analysed by field instrumentation and an off-site laboratory twice per week. The detailed sampling description is given in Appendix A.

1. Field measurements by King Island personnel recorded pH , temperature, and conductivity using a portable Hach HQ40d instrument supplied by JEPL. The visual appearance and odour of the effluent was also noted.
2. Laboratory analysis by EML (Chem) provided information on the following parameters; $\mathrm{pH}, \mathrm{COD}, \mathrm{BOD}_{5}$, oil and grease, TSS, volatile fatty acids (VFA), total alkalinity (TA), ammonia and total kjeldahl nitrogen measured as TKN.

Raw effluent composition over a typical production day was investigated three times during the monitoring period. Raw effluent samples were collected over a typical production day and analysed by field instrumentation and laboratory analysis. The frequency and handling of each sampling regime are as follows:

1. $9^{\text {th }}$ February 2012.

8 equal volume grab samples collected at approximately 1 hour intervals over production day and composited for laboratory analysis.
2. $4^{\text {th }}$ June 2012.

6 equal volume grab samples collected at approximately 1 hour intervals from 11 am to 4 pm and composited for laboratory analysis.
3. $5^{\text {th }}$ June 2012.
a. 11 equal volume grab samples collected at 1 hour intervals from 7 am to 5 pm , analysed for pH , temperature and conductivity using field instrumentation and composited for laboratory analysis.
b. 6 grab samples collected at 2 hour intervals from 7 am to 5 pm , analysed for pH , temperature and conductivity using field instrumentation and individual samples sent for laboratory analysis.

### 3.3 Biogas Monitoring

Online biogas monitoring of the methane composition, biogas flow and the pressure under the CAL cover was recorded to the sites SCADA system. An example of a SCADA output is shown in Appendix B. Further laboratory and field analysis of the biogas was performed by The Odour Unit on $5^{\text {th }}$ and $6^{\text {th }}$ June 2012.

### 3.3.1 Biogas Flow

Instantaneous and cumulative biogas flow from an FCI ST51 in-line gas flow meter (Photo 11) was recorded each minute to the SCADA system. King Island personnel also collected this information and commented on the cover inflation and the colour of the flame during twice weekly sampling.

The biogas pressure under the CAL cover was measured by Yokogawa pressure transducer (Photo 12) and was logged on the SCADA system.


Photo 11: Inline FCI biogas flow meter


Photo 12: Pressure transducer

### 3.3.2 Biogas Characterisation

The methane content of the biogas was measured by the inline Draeger Polytron 500 methane analyser (Photo 13) situated downstream of the biogas fan. Readings were automatically logged on the SCADA system.


Photo 13: Draeger methane analyser

The Odour Unit performed further field and laboratory analysis of the biogas on $5,6{ }^{\text {th }}$ June 2012. All biogas samples were collected from a suitable tap point on the fan discharge of the
gas flare system (Photo 14). Samples were collected during periods of flare burning. A variety of analytical methods were employed:

- A LANDTEC GEM 2000 Plus Portable Gas Analyser allowed continuous in-situ monitoring of methane, carbon dioxide, oxygen, hydrogen and hydrogen sulphide. This unit was connected and measuring between $4: 06 \mathrm{pm}$ to $5: 24 \mathrm{pm}$ on the $5^{\text {th }}$ June and 7:25am to 11:44am on the $6{ }^{\text {th }}$ June.
- Gastec detector tubes measured hydrogen sulphide, ammonia, benzene in aromatic hydrocarbons and carbon dioxide at various times on the $6^{\text {th }}$ June 2012.
- GCMS laboratory analysis was performed on two biogas samples collected in Tedlar bags at 8:00am and 11:55 am on the $6^{\text {th }}$ June 2012. Constituents analysed included: methane, carbon dioxide, oxygen, ammonia, BTEX, hydrogen sulphide and volatile fatty acids.


Photo 14: Gas flare system with LANDTEC GEM Portable Analyser connected to biogas sampling point

### 3.4 Sludge \& Crust Analysis

### 3.4.1 Sludge

Sludge accumulation in the CAL was checked on February $9^{\text {th }}$ and again on $5^{\text {th }}$ June 2012 by Dr Mike Johns of Johns Environmental using a Royce 711 TSS meter inserted through the two inspection points located near the centreline of the CAL cover.

On $5^{\text {th }}$ June 2012, a sludge truck connected through a 2 inch camlock fitting to the HDPE sludge pipework recovered $10 \mathrm{~m}^{3}$ of sludge from the CAL to test the effectiveness of the sludge removal system. Samples of the sludge were collected evenly over the period of sludge withdrawal and analysed by EML(Chem) for Total Solids, Volatile Solids, TP, TN and TDS.

### 3.4.2 Crust

Crust accumulation was assessed using the inspection ports on February $9^{\text {th }}$ and again on $5^{\text {th }}$ June 2012. The assessment involved quantitative measurement of crust depth at the two inspection ports. Crust samples were collected from each port on the $5^{\text {th }}$ June and analysed by EML(Chem) for total Solids, Volatile Solids, TN, TP and Oil and Grease.

A physical assessment by walking on the cover was also conducted to determine if noticeable build up was occurring under the cover.

## 4 Start-up Dynamics

Monitoring the start-up of the anaerobic process in the King Island CAL provided useful data for future prediction of industrial green field sites.

### 4.1 Biogas production

Evidence of biogas production was found 30 days after the CAL start-up. The biogas pressure under the CAL cover, shown in Figure 2, lifted from zero on the $11^{\text {th }}$ of January. JBS Personnel also noticed inflation of the CAL cover from the $12^{\text {th }}$ of January.

Due to delays in commissioning the flare operation, the biogas pressure slowly increased over the subsequent 12 days and reached a steady pressure of $\sim 30 \mathrm{~Pa}$. Additional biogas was most likely to have been vented from the safety vents at higher pressures.

Once the biogas flare was commissioned on the $2^{\text {nd }}$ February, the pressure at the end of each day was dependant on the daily flowrate through the flare. After a day of reasonable flow the pressure decreased, while on a day of low or zero biogas flow the pressure increased.


Figure 2: Biogas pressure under the CAL cover (at midnight)

The lag in biogas production of approximately one month during the CAL start-up indicates the biogas flare commissioning is not possible at the same time as pond commissioning. If biogas is to be used for boiler fuel or electricity generation there will be a delay in the reliable feed of biogas.

Summary Comment 1: Biogas production is not immediate with CAL commissioning

### 4.2 Start up period

The start-up period of a CAL is determined by the time required to achieve a stable anaerobic microorganism population. In simple terms, successful anaerobic treatment occurs when the two anaerobic microbial populations; acidogenic and methanogenic, are simultaneously thriving. The overall anaerobic process is simplified in Figure 3.


Figure 3: Overall anaerobic process

### 4.2.1 Acidogen start-up period

The first biological process involves acidogenic microorganisms breaking down complex organic material into volatile fatty acids (VFAs) and other short chain organic molecules.

Acidogens develop a stable population more quickly than the methanogenic population as they are faster growing and less sensitive to environmental conditions. The result of the growing acidogen population in the absence of a thriving methanogen population is the following.

1. Increased volatile fatty acid (VFA) concentration.

VFAs are an intermediate product of acidogenic activity. They are the food for the methanogens. When acidogenic activity exceeds methanogenic activity, VFAs will accumulate in the CAL effluent. Figure 4 shows an increasing concentration of volatile fatty acids in the CAL outlet at start-up, peaking on the $5^{\text {th }}$ January. This shows evidence of acidogen presence at start-up and their rapid growth which outpace the methanogenic growth.


Figure 4: Volatile Fatty acid concentration over monitoring period
2. Increased ammonia concentration.

Ammonia is the formed from the cleaving of organic nitrogen during the breakdown of the long chain organic molecules in the acidogenic first phase of the anaerobic process. Figure 5 shows a significantly greater ammonia concentration in the CAL outlet than the CAL inlet on each day while Figure 6 shows little change in total nitrogen across the pond. Figure 7 shows that the percentage of nitrogen present as ammonia reached a value of $83 \%$ by $28^{\text {th }}$ December 2011 and has remained at that value since. This confirms the initial presence of acidogens and their rapid growth at start-up.


Figure 5: Ammonia concentration over monitoring period


Figure 6: Total nitrogen concentration over monitoring period


Figure 7: Ammonia percentage of total nitrogen
3. Decreased pH .

Since the volatile fatty acids are intermediate products in the microbial reactions, they increase in concentration when their production (acidogenc stage) exceeds consumption (methanogenic stage). This lowers the pH in the CAL. However, for meat processing effluent, the ammonia released during protein degradation buffers this increase in acidity and there is often little change in pH .

Figure 8 shows the CAL effluent pH decreasing sharply from 7.0 to 6.3 in the initial 2 weeks of startup. The pH then hovers between 6.3 and 6.5 until the $24^{\text {th }}$ January 2012 and then slowly rises towards neutral over the remaining 5 months. This is a relatively small change in pH compared to many other types of effluent.


Figure 8: pH over monitoring period

The acidogen population appear to develop a stable population by the $28^{\text {th }}$ December as evidenced by the ammonia concentration. This suggests rapid start-up period for the acidogens.

### 4.2.2 Methanogen start-up period

The second biological process involves methanogenic microorganism converting the VFA and other short chain molecules into the predominant final gaseous products of methane and carbon dioxide. A perturbation from $5^{\text {th }}$ March to $30^{\text {th }}$ April 2012, discussed in Section 4.3, appeared to retard the development of the methanogenic population. However the eventual formation of a stable methanogenic population was displayed by the following.

1. Low VFA concentration.

As the overall anaerobic process proceeds to completeness, the VFA concentration decreases as it is consumed by the methanogens. Figure 4 shows the VFA slowly dropping from the $5^{\text {th }}$ January as the rate of VFA consumption by the methanogens exceeds the production by the acidogens.

In the absence of the perturbation the VFA concentration probably would have dropped to a stable number within 3 months of commissioning.
2. Increased pH towards neutral.

The methanogens consume the volatile fatty acids for methane production, which removes acidic products from the CAL. Figure 8 shows an increasing pH trend from the $24^{\text {th }}$ January.
3. Increased total alkalinity.

The carbon dioxide formed mainly in the methanogenic stage drives the total alkalinity higher. The total alkalinity shown in Figure 9 is highly variable during the start-up period. Like pH , the alkalinity is affected by many competing reactions.


Figure 9: Total alkalinity concentration over the monitoring period
4. Increased biogas production.

Unlike the acidogens, whose main products are soluble COD such as acetic acid, the products of methanogenic activity are gases - methane and carbon dioxide. Consequently, significant biogas generation is a sign of methanogen health. Biogas production began by the $11^{\text {th }}$ January when the pressure under the pond, shown in Figure 2, started increasing. Upon flare commission the biogas flowrate was measured and Figure 10 shows it consistently increasing until the $5^{\text {th }}$ March. In the absence of the perturbation, the biogas flow may have stabilised much earlier.


Figure 10: Daily biogas flow over monitoring period
5. Decreased effluent COD

The formation of methane and carbon dioxide by the methanogens removes the COD in the liquid phase thus reducing COD concentration in the effluent stream. Figure 11 shows COD in the outlet stream was significantly reduced compared to the influent during the first 3 months. Initially, this reduction in COD is due to dilution of the influent by the low strength water initially present in the pond (used to aid covering). Subsequent reduction is increasingly due to anaerobic action (until the perturbation in early March).


Figure 11: COD over monitoring period


#### Abstract

Summary comment 2 The start-up period for the acidogenic microbes was approximately 2 weeks from commissioning. This is indicated by the organic nitrogen conversion to ammonia and supported by VFA concentration and pH . Summary comment 3 In the absence of the perturbation starting on the $5^{\text {th }}$ March the start-up period for the methanogenic microbes was probably of the order of 3 months from commissioning.


### 4.3 Influence of shocks (perturbations)

Two major shocks were experienced by the bacterial population in the CAL during the startup period:

1. A sudden and sustained conductivity increase, shown in Figure 12, adversely affected the population for two months from the early March to early May 2012.
2. A 10 day programmed plant shutdown from $6^{\text {th }}$ to $15^{\text {th }}$ April 2012.

These periods are represented by the light and dark blue shaded regions respectively on Figure 10 to Figure 13.


Figure 12: Effluent Conductivity over monitoring period


Figure 13: VFA concentration over monitoring period

A rapid decline in anaerobic performance occurred with the conductivity shock. Although methanogenic biological populations are relatively hardy in respect of salt, they are highly sensitive during the start-up period when they are present in low numbers and not yet adapted to adverse environmental conditions. The onset of the conductivity spike caused immediate inhibition of methanogenic activity as evidenced by increase in VFA and COD concentration and decrease in the biogas production.

The unplanned shutdown provided time for the anaerobic process to recuperate during this period of high conductivity. COD in the effluent decreased while there was no new feed material. However the rate of biogas production also decreased due to the lack of cod-rich influent to the pond.

The methanogens acclimatised to the design conductivity levels as predicted by the Johns Environmental design team. Once the conductivity in the CAL returned to normal levels (in mid May), CAL performance began to stabilise. Sudden changes in environmental conditions or feed composition are known to be detrimental to anaerobic performance.

Anaerobic processes are highly sensitive to rapid changes in the CAL environment or feed composition during start-up.

### 4.4 Microbial Stress Indicators

Stress to the methanogens causes decreased anaerobic performance. Common stressors are start-up, changing or adverse environmental conditions and shock loads in the feed. An indication of CAL health is useful to allow mitigation before complete failure occurs. Traditionally, pH measurement is used for this purpose. Unfortunately, this is unreliable for protein-rich wastewater.

Besides biogas production, the best indicator of CAL health is the volatile fatty acid (VFA) to total alkalinity (TA) ratio. Typically, when this ratio is less than 0.25 , the anaerobic population is stress-free and performing optimally.

Figure 14 shows the VFA/TA ratio over the entire monitoring period. The stress associated with start up is clearly seen as a rapid increase in the VFA/TA ratio to a peak of 1.2 during startup. Subsequently in late January and early February, as the methanogen population builds, the VFA/TA ratio falls to more moderate - but still high - levels. The high conductivity shock caused the VFA/TA ratio to increase again from early March. Eventually with acclimatisation and lowering conductivity, the VFA/TA ratio stabilised below the optimum 0.25 value.


Figure 14: VFA/TA ratio over the CAL monitoring period

Summary comment 5: VFA/TA ratio is a much more sensitive indication of the CAL health than pH or COD removals and gives a good insight into CAL performance, especially if biogas data is unavailable.

### 4.5 Pond Temperature

Pond temperature is a critical parameter since it strongly affects the rate of microbial activity. For some ponds it is challenging to get them to temperature quickly - especially in southern or highland regions of Australia. The CAL feed temperature is the main driver in determining the operating temperature. However, the daily air temperature clearly also has an influence, particularly in the absence of a thick insulating crust.


Figure 15: Temperature of the CAL over the monitoring period

Figure 15 shows that even during summer, the increase in CAL temperature is slow. During winter, the CAL temperature stabilised at $23^{\circ} \mathrm{C}$ even during the windy, wet conditions which characterise winter on King Island.

Summary comment 6
CAL temperature is influenced by both the temperature inlet of the influent stream and the climatic conditions. Warming of the CAL volume is slow.

## 5 Normal Operating Performance

Normal operating performance within the design specifications for the CAL was achieved by the end of the monitoring period. This section presents and interprets measured information during this period, which occurred from approximately mid May until the end of the project in early July 2012.

### 5.1 Biogas production

Biogas flowrate and composition have been monitored since flare commissioning.

### 5.1.1 Biogas flowrate

The daily biogas flow was collected over the monitoring period when the flare was operational. The full data set is presented in Appendix C. Figure 16 (reproduced from Figure 10 in Section 4.2.2) shows the daily biogas flow over the monitoring period and highlights the following:

1. Stable biogas production in this CAL is approximately $740 \mathrm{~m}^{3} /$ day. This is higher than the expected design value of $600 \mathrm{~m}^{3} /$ day ( 25 CMH ), probably due to elevated wastewater flows into the CAL.
2. The biogas production increased with improved CAL performance, especially as conductivity reduced after the shock load.
3. The biogas flow is relatively steady over the 7-day week, despite the 5 day production cycle. Biogas flow was only seen to significantly decrease when raw feed was stopped for a longer period of time as seen during the 10 day shutdown.
4. The maximum biogas production was $1,100 \mathrm{~m}^{3} / \mathrm{d}$ requiring 20.4 hours of flare operation at its high flare setting ( 45 CMH ). This translates to a $50 \%$ peaking factor.


Figure 16: Biogas flow over monitoring period

Summary comment 7: Biogas flowrate increases during start-up and is affected by adverse conditions in the pond.

Summary comment 8: $\quad$ The maximum gas production observed is $1,100 \mathrm{~m}^{3} / \mathrm{d}$ representing a peaking factor of $50 \%$.

Summary comment 9: Biogas production is relatively constant during the week, despite the 5 day operating profile.

### 5.1.2 Biogas methane composition

The methane content of the biogas was measured using the online methane analyser during flare operation. The data is presented in Figure 17. The candlestick format represents the range between the daily $90 \%$ ile and $10 \%$ ile values. The 50 percentile is also indicated since late April. The full data set is presented in Appendix C. The following is inferred from Figure 17:

1. Biogas methane concentration varied between $66 \%$ and $76 \% \mathrm{v} / \mathrm{v}$ when operating under normal operation conditions. The median biogas methane concentration since May is $70 \% \mathrm{v} / \mathrm{v}$ which is the design value.
2. Methane concentration slowly increased as the CAL performance improved.
3. The methane concentration of the biogas is significantly reduced by the onset of the conductivity shock. It is unclear if this was a true reflection of the reduced performance in the CAL or onset of inaccurate measurements caused by a worsening moisture condensation issue in the online methane analyser (as discussed below). However, shocks are well known to reduce the methane content of biogas.
4. The biogas was enriched in methane (up to $78 \%$ ) near the end of the shutdown period.


Figure 17: Biogas methane concentration

Methane analysers are known to be affected by the high moisture content of biogas. To check this issue, a portable analyser fitted with an inline filter to remove moisture was used to monitor biogas methane in June sampling conducted by The Odour Unit during periods of flare operation. Figure 18 shows that the portable analyser consistently returning a slightly higher value for the methane concentration compared to the on-line analyser (ranging between $1 \%$ to $3 \% \mathrm{v} / \mathrm{v}$ absolute). Hence the on-line analyser methane measurements can be considered conservative.


Figure 18: Difference in methane analysis between portable analyser and on-line analyser
The methane concentration of the biogas consistently decreased during production hours. Figure 19 shows methane concentrations during a typical production day. In contrast, there was a reasonably steady methane concentration on non-production days (Figure 20). The graphs for all other days are presented in Appendix C. This effect is not due to moisture affecting the meter as the portable biogas analyser also detected the same effect (Figure 21).


Figure 19: Methane concentration over production day


Figure 20: Methane concentration over non-production day

Summary Comment 10: Methane concentration increased during start-up. The median methane concentration of the biogas is $71 \% \mathrm{v} / \mathrm{v}$ during normal operation with a range of $\pm 5 \%$ absolute.

### 5.1.3 Biogas composition - other components

The composition of the biogas during a normal operating day is presented in Table 3 from the various analytical methods used by The Odour Unit from sampling performed on-site in June 2012. GCMS laboratory analysis of samples collected in Tedlar bags provided concentration data for the main gases and other trace impurities. The full set of results is presented in Appendix C.

The primary components are methane and $\mathrm{CO}_{2}$. Some air is also present (oxygen \& nitrogen). Trace concentrations of hydrogen sulphide, BTEX and acetic acid were also detected.

Table 3: Comparison of results from various biogas analysis techniques

| Test Item | unit | On-line <br> analyser | Portable <br> analyser | Gastec <br> Tubes | Tedlar |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| $\mathbf{C H}_{\mathbf{4}}$ | 8 am | $\%$ | 76 | 75.6 |  | 59.6 |
|  | 12 pm |  | 68 | 69.7 |  | 45.6 |
| $\mathbf{C O}_{\mathbf{2}}$ | 8 am | $\%$ |  | 24 | 24 | 29.1 |
|  | 12 pm |  | 23.4 |  | 23.6 |  |
| $\mathbf{O}_{\mathbf{2}}$ | 8 am | $\%$ | 0 |  | 2.4 |  |
|  | 12 pm |  | 0.8 |  | 6.6 |  |
| Balance $\left(\mathbf{N}_{\mathbf{2}}\right.$ and $\left.\mathbf{A r}\right)$ | 8 am | $\%$ | 0.2 |  | 9 |  |
|  | 12 pm |  | 6.1 |  | 24.3 |  |
| $\mathbf{H}_{\mathbf{2}} \mathbf{S}$ | 8 am | ppm |  |  | 1500 | 2749 |
|  | 12 pm |  | 90 | 110 | 254 |  |

The methane concentrations found by the laboratory analysis of biogas collected in Tedlar bags are very different to those found by the other measurement devices. The reason for this difference is unclear.

The presence of oxygen during production hours as shown in Figure 21, suggests the entrainment of air in the feed stream to the CAL during production hours as there is no other oxygen source. The feed stream is aerated over the rotating screen immediately prior to its feed to the CAL. Calculations suggest that as little as 0.13 ppm of dissolved air entrained in the feed stream is sufficient to contribute the levels of oxygen and nitrogen gas measured in the biogas (Figure 21).


Figure 21: Biogas composition analysed by portable meter over production day

Hydrogen sulphide concentration in the biogas ranged between 70 ppm and $2,000 \mathrm{ppm}$ as shown in Figure 22 and Photo 15. A rapid decline in the level of hydrogen sulphide in biogas was detected by all measuring devices once processing of animals commenced. These are relatively low levels of $\mathrm{H}_{2} \mathrm{~S}$.


Figure 22: Hydrogen Sulphide concentration in biogas


Photo 15: Hydrogen Sulphide Gastec tubes collected over morning of $6^{\text {th }}$ June 2012

Summary comment 11: Hydrogen sulphide levels in the biogas were low and fell at the onset of production.

### 5.2 Contaminant Removal from the Wastewater

### 5.2.1 Influent Composition

Contaminant removal was calculated as the inlet concentration minus the outlet concentration divided by the inlet concentration. While obtaining accurate CAL outlet concentration is straightforward, due to the long HRT of the CAL which dampens fluctuations in composition, it was much more difficult to obtain a consistent and representative composition of the feed to the CAL since:

- There is usually little equalisation of the raw wastewater prior to the CAL;
- A number of waste sources of widely varying composition contribute intermittently to the feed, so it has an inherently high variability;
- The raw wastewater is made up of TSS (which tend to settle), greases (which tend to float) and other components which are dissolved in the water.

Figure 23 and Figure 24 show the variation of measured components in the raw inlet stream over the 8 -month monitoring period. All samples were collected as composite of 3 grabs collected over 15 minutes during peak production hours and the full set of values is presented in Appendix C.


Figure 23: Field Results of Composite Inlet Stream over 7 month Monitoring Period


Figure 24: Laboratory Results of Composite Inlet Stream over 7 month Monitoring Period

In June 2012, grab samples of the CAL feed were collected over a typical production day and analysed individually to assess the degree of daily variation. The wide variation in raw effluent composition (Figure 25) and flow (Figure 26) over the production day highlights the complexity in obtaining "accurate" values for the overall load to the CAL.


Figure 25: Raw Effluent Composition across Typical Production Day


Figure 26: Raw Effluent Flow across Typical Production Day

Table 4 summarises the influent compositions determined by a range of methods. These results show the wide variation in feed composition and the difficulty in determining the raw feed composition to the CAL with high precision.

Table 4: Composite Samples of Raw Feed to CAL

| Parameter |  | Design | Composite $9^{\text {th }}$ Feb 12 (Note 1) | Composite $4^{\text {th }}$ June 12 | Composite $5^{\text {th }}$ June 12 | Median over monitoring period (Note 2) | Weighted composite $5^{\text {th }}$ June (Note 3) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| COD | mg/L | 7,250 | 7,700 | 5,200 | 3,500 | 4,050 | 4,724 |
| BOD | mg/L | 3,000 | 3,800 | 1,400 | 1,300 | 1,450 | 1,265 |
| TSS | $\mathrm{mg} / \mathrm{L}$ | 2,000 | 4,900 | 2,200 | 1,400 | 1,500 | 2,023 |
| O\&G | mg/L | 120 | 420 | 110 | 190 | 170 | 156 |
| EC | uS/cm | 8,500 | 8,800 |  | 6,000 | 8,100 | 5,671 |
| pH |  | 7.2 | 7 | 7.8 | 7.6 | 7.9 | 7.9 |
| Temperature | ${ }^{\circ} \mathrm{C}$ | 30-35 |  |  | 30.9 | 33 | 32.4 |
| $\mathrm{NH}_{3}$ | mg/L | 250 | 76 | 77 | 41 | 42 | 39 |
| $\mathrm{NO}_{2}$ | $\mathrm{mg} / \mathrm{L}$ |  |  |  | <1 |  |  |
| $\mathrm{NO}_{3}$ | mg/L |  |  |  | <0.02 |  |  |
| TKN | mg/L |  | 340 | 270 | 210 | 230 | 227 |
| TN | mg/L | 450 |  |  | 210 |  |  |
| TP | mg/L | 45 |  |  | 23 |  |  |

Notes: 1. The three composite samples were created from equal volume grab samples collected over the production day.
2. The median value was calculated from the influent samples collected twice weekly over the monitoring period.
3. The weighted composite value is calculated from the sum of the 2 hourly loads divided by the total volume using samples collected on the $5^{\text {th }}$ June 2012

The overall raw feed composition used to calculate removal rates used the weighted composite values in Table 4. These values are reasonably close to the three composites and the median values found over the monitoring period.

The weighted composite used is differs from the design composition with BOD, COD and EC being significantly lower and the O\&G being reasonably greater.

Summary Comment 12: Raw effluent composition is difficult to determine and high accuracy is unattainable due to daily variation.

### 5.2.2 COD and $\mathrm{BOD}_{5}$ removal by the CAL

The COD and BOD removal rates were initially stable during start-up, decreased as a result of the conductivity shock but stabilised once normal operation was achieved. The data from the period of normal CAL operation shows $85 \%$ BOD and $80 \%$ COD removal, which match the CAL design values. Removal is shown visually in Photo 16. The CAL appears to perform similarly to an uncovered anaerobic pond at similar operating regimes.


Figure 27: COD concentrations over the CAL monitoring period


Photo 16: CAL Feed and Discharge

Summary comment 13: $\quad$ BOD and COD removal stabilised at 85 and $80 \%$ removal respectively by the end of the monitoring period.

### 5.2.3 TSS and Oil \& Grease Removal

Figure 28 shows total suspended solids and oil \& grease removals were excellent from startup with removals quickly achieving of $85 \%$ and $80 \%$ respectively. Some of this may be due to settling and/or crusting under the cover - a factor to be discussed in Section 6.


Figure 28: TSS and O\&G removal over the CAL monitoring period

Summary comment 14: TSS and O\&G removal was immediate from startup and is approximately $80 \%$ for both

### 5.2.4 Feed Flow

Figure 29 presents the wastewater flow and production numbers over the monitoring period. Both increased from late February and have remained approximately constant through to the end of the monitoring period. The median wastewater flow from late February is $350 \mathrm{~kL} / \mathrm{d}$ production day flow which exceeds the 290kL/d design flow by a considerable margin.


Figure 29: Daily Wastewater Flows and Production

### 5.3 Estimate of Biogas Production

The volume of biogas formed from the COD removed (biogas conversion factor) is an useful metric for estimating biogas production in CALs. Typical values in the literature are $0.5 \mathrm{~m}^{3}$ biogas per kg COD removed for a stably operating anaerobic system.

Figure 30 presents calculated results using the weekly biogas production, the weekly average outlet COD concentration, the weighted composite inlet COD concentration (Section 5.2.1) and the weekly wastewater flow. The two data points highlighted in red are thought to be outliers:


Figure 30: Biogas production per kg COD removed

Initially the biogas conversion factor increased gradually from $0.25 \mathrm{~m}^{3} / \mathrm{kg}$ COD removed while the anaerobic biology builds to a stable population.

The biogas production rate stabilised during normal operation at approximately $0.7 \mathrm{~m}^{3}$ biogas $/ \mathrm{kg}$ COD removed. At the median biogas methane concentration of $70 \% \mathrm{v} / \mathrm{v}$ this is equivalent to $0.5 \mathrm{~m}^{3} \mathrm{CH}_{4} / \mathrm{kg}$ COD removed. This value is significantly higher than literature values and should be used with caution due to the challenges in determining incoming COD levels.

Summary comment 15: The biogas conversion rate is $0.7 \mathrm{~m}^{3}$ biogas $/ \mathrm{kg}$ COD removed or $0.5 \mathrm{~m}^{3}$ methane $/ \mathrm{kg}$ COD removed.

## 6 Crust \& Solids accumulation

Uncovered anaerobic ponds treating meat processing wastewater form often thick crusts over time due to the buoyant nature of the fine suspended solids in the wastewater and the tendency of oil \& grease to separate into a floating scum. This is undesirable for CALs since the floating crust poses a risk to the integrity of the cover and the biogas capture system.

Settled solids also pose a risk to the longevity of the CAL, since they can rapidly accumulate and fill the pond, reducing the HRT available for treatment. The solids arise from two sources:

- Inert suspended and gross solids originally present in the raw wastewater. Levels of these solids need to be reduced through effective pre-treatment;
- Biological solids formed during the anaerobic process. Although anaerobic processes are renown for their low sludge formation per tonne COD removed, large amounts of solids are still formed due to the high inlet organic load these ponds typically receive. Poor design can lead to rapid sludge build-up. CAL designs differ in how they handle this issue.

Pre-treatment of the raw wastewater at King Island consisted of a rotating wedgewire screen to remove gross and suspended solids. The original Dissolved Air Flotation (DAF) plant at King Island was badly corroded and JBS decided oil \& grease levels were sufficiently low in the raw wastewater to avoid the need for a new DAF.

Crust build-up and sludge accumulation was investigated during the project after 2 and 6 months of operation.

### 6.1 Crust Build-up

An accumulation of a semi-solid floating scum under the cover was noted during the project. Table 5 reviews the visual observations through the two sample ports at the two inspection dates. Analysis of the scum sample from June 2012 is presented in Appendix C.

Within 2 months of commissioning, a substantial thickness of a thick mustard brown scum was evident at both sample ports (Photo 17 and Photo 18). At the screen (inlet) end of the CAL, the scum had hardened off in the port . However, it remained soft, but firm under the cover.

Table 5: Crust build-up observed in the two inspection ports

|  | Feb 2012 | June 2012 |
| :--- | :--- | :--- |
| Flare end | 150 mm moussy crust | $<50 \mathrm{~mm}$ moussy crust |
| Screen end | 200 mm mousse | $>200 \mathrm{~mm}$ crust with fine <br> paunch solids |

After 6 months of operation the scum was evident under the cover for the first 9 meters distance from the inlet end. A sample found that it comprised $13 \% \mathrm{w} / \mathrm{w}$ total solids containing
$25 \% \mathrm{w} / \mathrm{w}$ oil and grease on a dry basis. This is consistent with a fatty deposit separating from the influent stream.


Photo 17: CAL crust at flare end


Photo 18: CAL crust at screen end

In the outlet half of the CAL, the crust had thinned considerably since February and had a thin, mousse-like consistency. It is likely that much of the scum arises from a foamy mousse formed when the bacteria are under stress during the first 3 months of operation. As the pond has recovered and settled into normal operation, this scum will probably disappear - as is evident in the June sampling.

Nearer the inlet, however, there appears to be an issue with scum accumulation. The quantity of fat deposited over a 6 month period can be estimated from the median O\&G influent concentration of $156 \mathrm{mg} / \mathrm{L}$, and assuming an O\&G removal of $80 \%$ (see Figure 28) and flowrate of $350 \mathrm{~kL} / \mathrm{d}$. The remaining O\&G translates to 5.6 tonnes of potential scum.

Summary Comment 16: Undesirable crust build-up is occurring beneath the cover with greater than 200 mm of semi-firm crust present within the inlet third of the CAL.

### 6.2 Sludge Accumulation

Sludge depth was measured using the Royce TSS meter calibrated to measure TSS levels. Sludge levels approximating greater than $1 \%$ w/v (e.g. $10,000 \mathrm{mg} / \mathrm{ISS}$ ) are detected when the unit goes off scale.

The sludge in the CAL has increased within the first 6 months of the CAL operation as shown in Table 6. The first 3 months saw a sludge depth of approximately 2 m increasing to 2.7 m within the next 3 months. However, at both points, the Royce probe was able to easily transit through the sludge layer to the CAL base indicating that sludge was largely biological. Interpreting this finding is difficult since Johns Environmental has only recently applied this technology to CALs. Some sludge is essential to the normal operation of the pond, however, excessive quantities are undesirable. Further assessment is needed to determine this.

Table 6: Sludge depth off the CAL base observed in the two inspection ports

|  | Feb 2012 | June 2012 |
| :--- | :--- | :--- |
| Flare end | 2.25 m | 2.7 m |
| Screen end | 2 m | 2.7 m |

During the June 2012 sampling, a sludge truck successfully withdrew $10 \mathrm{~m}^{3}$ of black sludge through the sludge pipework over 15 minutes (Photo 19). There was little indication of rat holing (breakthrough of liquid) during the pumping since analysis of sludge sampled at even intervals during the withdrawal process showed little decrease in total solids with 2.7, 2.4, 2.4 and $2.2 \%$ total solids in sequential samples. Further analytical results are presented in Appendix C.


Photo 19: Sludge truck

Summary Comment 17: Sludge accumulation was evident in the CAL over 6 months of operation but was successfully withdrawn through the sludge removal piping.

## 7 Conclusions

The major outcomes highlighted by this CAL monitoring study are presented below.

1. The CAL has operated successfully for 25 weeks post startup with excellent COD removal ( $80 \%$ ) which is the primary function of the pond, despite higher than design wastewater flows. The CAL delivers excellent biogas quality and quantity after 6 months of operation. Biogas production is approximately $0.7 \mathrm{~m}^{3} / \mathrm{kg}$ of COD removed or $740 \mathrm{~m}^{3} /$ day. The biogas methane concentration is consistently greater than $70 \%$ $\mathrm{v} / \mathrm{v}$.
2. Gas flow is reasonably steady over the full 7 day week despite the facility operating a 5 day/week.
3. Methane and $\mathrm{CO}_{2}$ are the main biogas constituents with lesser contaminants including nitrogen, argon, oxygen and $\mathrm{H}_{2} \mathrm{~S} . \mathrm{H}_{2} \mathrm{~S}$ levels were typically 100 to 200 ppm during the production day, but as a concentration as high as $2,000 \mathrm{ppm}(0.2 \%)$ was measured early in the production day.
4. CAL start-up required 25 weeks for stable operation. Initial startup was successful within 8 weeks, despite the site being a greenfield site with no option for sludge inoculation.
5. A shock load of salt near the end phase of start-up severely upset the CAL with noticeable impact on biogas production, VFA and alkalinity values and COD removal. This highlights the need for careful control of raw wastewater composition where a reliable and consistent supply of biogas is needed - for example for boiler fuel, or cogeneration in a gas engine.
6. The VFA/TA ratio proved an effective way of following the performance of the CAL but is subject to time effective analysis.
7. Crust build up has occurred under the cover possibly due to the relatively low level of pretreatment used at King Island. The initial phase may be more due to microbial foaming than oil \& grease accumulation and shows signs of thinning in the rear half of the CAL as it achieves normal performance. Near the inlet, however the scum is rich in oil \& grease.
8. Sludge has also accumulated in the base of the CAL, but may be part of the treatment process. A significant volume was successfully extracted using the sludge removal pipework after 6 months.

## 8 Recommendations

1. The King Island CAL is operating at design performance and is producing sizeable volumes of methane rich biogas. The technology appears eminently appropriate for red meat processing plants.
2. There is a need for attentive management of raw wastewater feed composition and variation compared to the traditional uncovered anaerobic ponds to ensure a reliable and steady supply of biogas for end-use. This will be financially important where biogas is recovered for gas engine cogeneration or for use as boiler fuel.
3. The risk of crust accumulation under the cover is clearly demonstrated at King Island. This issue merits further attention to develop means by which potential damage to infrastructure is avoided.
4. Sludge withdrawal systems are recommended as a sludge management tool for CALs.
5. The degree of error in methane concentration measured by in-line analysers caused by biogas moisture is unclear. There were large discrepancies in methane content measured by inline, portable and laboratory methane analysis. It would be helpful to quantify the impact of moisture on inline analysis for this critical measurement.
6. While pretreatment reduces the risk of crust build-up and sludge accumulation, it also reduces potential for biogas formation with the lowered organic load. Recommended further research on the optimal degree of pretreatment would determine maximum biogas production while not hindering CAL performance.
7. Stormwater removal from the cover is a persistent problem in industrial CAL operation. Attention to this detail in CAL cover design would benefit industry greatly.
8. Appendices

## Appendix A: Monitoring Plan

This document proposes a plan [The Plan] for a 9-month investigation of the CAL operation. The Plan seeks to obtain sufficient factual information to achieve the stated objective.

## Key Elements

The Plan will require the following field investigations to be conducted:

1. Characterisation of the volume and quality of effluent entering and leaving the CAL.
2. Characterisation of the volume and quality of the biogas leaving the CAL.
3. Sludge volumes produced and the utility of the sludge removal system in removing them.

## Management of the Investigation

The skills required to perform the investigation require several contractors and consultants to be involved. The separate tasks and people involved are presented in Table 1.

Dr. Mike Johns of Johns Environmental [JEPL] will be project manager for the investigation and assist in on-site field work and training the Swift Australia King Island [SAKI] persons responsible for sampling and maintenance of the field equipment.

Dr Bronwen Butler (Johns Environmental) will assist in the investigation. She will collate, process and validate the field data supplied by and generate deliverables and communicate with SAKI personnel.

SAKI personnel will be responsible for monitoring and/or recording:

- Daily flows to the CAL;
- Inlet and outlet wastewater sampling (after training by Drs Johns and Butler);
- Daily biogas flows;
- Daily biogas composition (on-line methane analyser);
- Plant data as required.

These data will be sent electronically to Johns Environmental in Brisbane for collation and processing.

Table 7 - Tasks \& Responsibilities

| Task |  |
| :--- | :--- |
| Wastewater Treatment | JEPL |
| Create sampling schedule | SAKI |
| Installation of in-line flow-meter | SAKI |
| Collect CAL flow data | SAKI |
| Wastewater measurements using HACH HQ <br> 40d | SAKI |
| Collection of scheduled inlet and outlet CAL <br> wastewater samples | EML (Chem) Pty Ltd |
| Send data to JEPL | JEPL |
| Analysis of wastewater samples | SAKI |
| Collation of results | SAKI |
|  | SAKI |
| Biogas Production | SAKI |
| Installation of in-line biogas flow meter | The Odour Unit |
| Installation of methane analyser | The Odour Unit |
| Collect biogas flow data | SAKI |
| Collect methane analyser data | JEPL |
| Collection of biogas sample |  |
| Analysis of biogas sample | JEPL |
| Send data to JEPL |  |
| Collation of biogas results |  |
|  |  |
| Sludge and Crust Accumulation |  |
| Check sludge and crust accumulation |  |

## Wastewater

## Wastewater Flow

A Siemens magflow meter will be installed on the raw wastewater rising main from pump station 1 to the Doda screen upstream of the CAL. This ensures measurements are taken in a flooded section of pipe. The flowmeter allows both instantaneous and totalized flow recording.

The daily raw wastewater flows entering the CAL will be recorded and downloaded to JEPL on a weekly basis. JEPL also request the daily HSCW production information.

## Wastewater Characterisation

Readily accessible sampling points will be installed at the inlet and outlet of the CAL.

Wastewater sampling across the CAL will be as follows. Composite is the preferred sampling technique due to the variability in composition experienced from abattoirs.

1. Field measurements of the effluent discharged from the CAL will determine pH , temperature, DO, conductivity and ORP by SAKI personnel using a portable Hach HQ40d device supplied by JEPL. This sampling will be conducted twice per week or as instructed by JEPL. JEPL request that the visual appearance and odour of the effluent also be noted.
2. Composite wastewater samples of the raw wastewater and CAL discharge will be taken by SAKI personnel using the schedules provided in Error! Reference source not found. and Table 10 for the start-up period and Table 11 for normal operation. JEPL will inform the SAKI personnel as to when to change to the next schedule. The schedule details will be subject to change by JEPL if conditions warrant. A suitable 25 mm dia. tap has been provided for pre-CAL sampling at pump station 1 and safe access will be provided for sampling the CAL discharge in the downstream pit.
3. Where possible, samples will go to the testing laboratory without chemical preservation to provide the best description of components. JEPL will inform SAKI personnel in writing with amendments to the sampling schedule.

Table 8- Parameters to be measured by HACH HQ40d
Parameter H1

- pH

H
HACH HQ40d
Temperature
Conductivity
Oxidation Reduction Potential

Table 9- Parameters to be measured by laboratory analysis

|  | Parameter | S1 | S2 | S3 | S4 | S5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | pH | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
|  | Total Chemical Oxygen Demand (COD)t | $\checkmark$ | $\checkmark$ | $\checkmark$ |  |  |
|  | 5-day Biological Oxygen Demand ( $\mathrm{BOD}_{5}$ ) |  | $\checkmark$ | $\checkmark$ |  |  |
|  | Oil \& grease (O\&G) |  |  | $\checkmark$ |  |  |
|  | Total Suspended Solids (TSS) |  |  | $\checkmark$ |  |  |
|  | Volatile Fatty Acids (VFA) |  |  |  | $\checkmark$ |  |
|  | Total Alkalinity (TA) |  |  |  | $\checkmark$ |  |
|  | Ammonia-nitrogen ( $\mathrm{NH}_{3}-\mathrm{N}$ ) |  |  |  |  | $\checkmark$ |
|  | Total Kjeldahl Nitrogen (TKN) |  |  |  |  | $\checkmark$ |

Table 10 - Start-up Operation Sampling Schedule

| Week | Tues |  | Thurs |  |
| :---: | :---: | :---: | :---: | :---: |
|  | CAL inlet | CAL outlet | CAL inlet | CAL outlet |
| $a$ | H1 | H1 | H1 | H1 |
|  | S2 | S2 | S3 | S3, S4 |
| b | H1 | H1 | H1 | H1 |
|  | S2 | S2 | S3, S5 | S3, S4, S5 |

Table 11 - Normal Operation Sampling Schedule

| Week | Tues |  | Thurs |  |
| :---: | :---: | :---: | :---: | :---: |
|  | CAL inlet | CAL outlet | CAL inlet | CAL outlet |
| a | H1 | H1 | H1 | H1 |
|  | S1 | S1 | S1 | S1, S4 |
| b |  | H1 | H1 | H1 |
|  | S1 | S1 | S3, S5 | S3, S4, S5 |

## Biogas Monitoring

## Biogas Flow

The biogas train will be equipped with a FCI in-line gas flow meters. The SAKI personnel will collect this information and should also comment on the cover inflation and the colour of the flame. JEPL request for the information to be forwarded weekly.

## Biogas Characterisation

Biogas quality will be characterised. Methane content is the most critical component of the biogas in terms of end use. Off-line sampling permits contaminant levels in the gas to be known - these determine the extent of clean up required for specific uses.

1. The in-line methane analysis data will be collected by SAKI personnel from the Draeger unit installed.
2. Biogas samples will be taken by The Odour Unit during normal operation period to analyse the biogas for $\mathrm{CH}_{3}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{~N}_{2} \mathrm{O}$ and CO content to permit comparison with data from sites involved in the A.ENV. 0093 biogas quality study. The Odour Unit will analyse the samples using on-site equipment.

## Sludge and Crust Accumulation

Crusting under the HDPE cover is highly undesirable. The development of crust will be assayed by inspection at access points in the cover. This will be performed by Dr Johns over the normal operation period when he is on site.

Sludge accumulation is also undesirable in the CAL. Sludge removal pipes have been installed on the floor of the CAL. These allow periodic sludge removal if necessary. Towards the end of the normal operation trial period Dr Johns will inspect the CAL to determine if sludge accumulation has occurred using both a Hydrolab Minisonde, a Royce meter and by pumping from the sludge collection system. An estimate of sludge accumulation will be made.

## Appendix B: Sample SCADA Biogas Output



## Appendix C - Raw data

Table 12: Daily Biogas Pressure at Midnight

| Date | $\begin{gathered} \hline \text { Biogas } \\ \text { Pressure (Pa) } \end{gathered}$ | Date | $\begin{gathered} \text { Biogas } \\ \text { Pressure (Pa) } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| 4/1/12 | 0 | 25/1/12 | 32 |
| 5/1/12 | 0 | 26/1/12 | 32 |
| 6/1/12 | 0 | 27/1/12 | 32 |
| 7/1/12 | 0 | 28/1/12 | 31 |
| 8/1/12 | 0 | 29/1/12 | 33 |
| 9/1/12 | 0 | 30/1/12 | 35 |
| 10/1/12 | 0 | 31/1/12 | 32 |
| 11/1/12 | 5 | 1/2/12 | 33 |
| 12/1/12 | 6 | 2/2/12 | 17 |
| 13/1/12 | 10 | 3/2/12 | 12 |
| 14/1/12 | 11 | 4/2/12 | 26 |
| 15/1/12 | 13 | 5/2/12 |  |
| 16/1/12 | 24 | 6/2/12 | 34 |
| 17/1/12 | 25 | 7/2/12 | 15 |
| 18/1/12 | 31 | 8/2/12 |  |
| 19/1/12 | 32 | 9/2/12 | 35 |
| 20/1/12 | 31 | 10/2/12 | 20 |
| 21/1/12 | 35 | 11/2/12 | 18 |
| 22/1/12 | 55 | 12/2/12 | 19 |
| 23/1/12 | 40 | 13/2/12 | 32 |
| 24/1/12 | 30 | 14/2/12 | 39 |

Table 13: CAL Feed - Field Analysis

| Date | Time | pH | Temp ${ }^{\circ} \mathrm{C}$ | Cond $\mu \mathrm{S} / \mathrm{cm}$ | $\begin{gathered} \text { O.R.P. } \\ \mathrm{mV} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 15/12/2011 | 10:09 | 8.38 | 33.1 | 8,070 | -80.7 |
| 21/12/2011 | 8:35 | 7.87 | 35.3 | 5,200 | -51 |
| 28/12/2011 | 8:55 | 7.83 | 37.6 | 3,220 | -49.1 |
| 4/01/2012 | 10:10 | 7.04 | 29 | 7,100 | -1 |
| 5/01/2012 | 8:20 | 7.05 | 36.9 | 19,660 | -1.4 |
| 10/01/2012 | 8:50 | 7.93 | 33.4 | 6,030 | -54.4 |
| 12/01/2012 | 10:30 | 7.4 | 37.3 | 3,050 | -21.7 |
| 17/01/2012 | 7:55 | 6.87 | 35.2 | 4,800 | 9 |
| 19/01/2012 | 8.37 | 8.02 | 26.1 | 8,940 | -60.2 |
| 24/01/2012 | 8:10 | 8.34 | 28.5 | 14,200 | -77.4 |
| 31/01/2012 | 8:30 | 8.39 | 34.9 | 15,950 | -82.2 |
| 2/02/2012 | 8:04 | 7.93 | 33.5 | 9,260 | -57.2 |
| 6/02/2012 | 11:00 | 8.21 | 36 | 6210 | -73 |
| 9/02/2012 | 10:30 | 7.19 | 36.6 | 4300 |  |
| 14/02/2012 | 8:45 | 8.21 | 36 | 7860 | -72 |
| 16/02/2012 | 8:30 | 8.04 | 34.8 | 9410 | -61 |
| 21/02/2012 | 10:30 | 7.72 | 43.1 | 5890 | -43 |
| 23/02/2012 | 8:45 | 6.97 | 35.3 | 6590 | 3 |
| 28/02/2012 | 8:32 | 8.26 | 36.5 | 7150 | -74 |
| 1/03/2012 | 8:30 | 7.81 | 34.4 | 6590 | -47 |
| 8/03/2012 |  | 8.18 | 34.5 | 4630 | -69 |
| 13/03/2012 | 8:35 | 8.15 | 33.6 | 8120 | -67 |
| 15/03/2012 | 8:45 | 8.04 | 35.4 | 8710 | -61 |
| 20/03/2012 | 10:50 | 7.83 | 28.2 | 16850 | -47 |
| 22/03/2012 | 7:40 | 6.7 | 27 | 21730 | 19 |
| 27/03/2012 | 8:30 | 7.28 | 28.4 | 5200 | -15 |
| 29/03/2012 | 10:45 | 6.89 | 26.5 | 9330 | 8 |
| 3/04/2012 | 7:35 | 7.71 | 32.5 | 9230 | -43 |
| 19/04/2012 | 15:15 | 7.86 | 30.4 | 2600 | -51 |
| 24/04/2012 |  | 8.24 | 29.6 | 28,300 | -72 |
| 26/04/2012 | 7:50 | 7.03 | 24.1 | 3120 | 0 |
| 1/05/2012 | 8:30 | 8.05 | 14.4 | 11,410 | -58 |
| 3/05/2012 | 7:45 | 7.83 | 33.4 | 25000 | -48 |
| 8/05/2012 | 8:36 | 7.31 | 27.8 | 10170 | -17 |
| 10/05/2012 | 12:00 | 6.93 | 31.3 | 3540 | 5 |
| 15/05/2012 | 7:50 | 8.68 | 31.6 | 13300 | -99 |
| 17/05/2012 | 7:50 | 8.41 | 34.4 | 12650 | -83 |
| 22/05/2012 | 13:26 | 7.56 | 28.8 | 5010 | 32 |
| 24/05/2012 | 8:15 | 8.24 | 31.8 | 30900 | -72 |
| 29/05/2012 | 8:15 | 7.66 | 25.4 | 21010 | -38 |
| 31/05/2012 | 8:20 | 7.07 | 26.3 | 11350 | -3 |
| 5/06/2012 | 9:30 | 7.8 | 31.5 | 6363 |  |
| 12/06/2012 | 8:05 | 8.55 | 27.8 | 18900 | -80 |
| 14/06/2012 | 9:35 | 7.55 | 22.4 | 3410 | -33 |
| 19/06/2012 | 8:00 | 8.28 | 22.9 | 7650 | -63 |
| 21/06/2012 | 8:15 | 7.38 | 35 | 24200 | -13 |
| 26/06/2012 | 10:45 | 8.82 | 29.8 | 6520 | -96 |
| 28/06/2012 | 7:40 | 7.87 | 28 | 21150 | -41 |
| 3/07/2012 | 8:15 | 8.5 | 33.7 | 10050 | -79 |
| 5/07/2012 | 10:40 | 8.41 | 34.6 | 4020 | -73 |

Table 14: CAL Discharge - Field Analysis

| Date | pH | Temp ${ }^{\circ} \mathrm{C}$ | Cond $\mu \mathrm{S} / \mathrm{cm}$ | $\begin{gathered} \text { O.R.P. } \\ \mathrm{mV} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 15/12/2011 | 6.95 | 22.1 | 4,910 | 4.5 |
| 21/12/2011 | 6.58 | 23 | 5,840 | 25.6 |
| 28/12/2011 | 6.34 | 23 | 6,550 | 39.3 |
| 4/01/2012 | 6.43 | 26.7 | 7,050 | 34.6 |
| 5/01/2012 | 6.47 | 24.8 | 7,010 | 32.4 |
| 10/01/2012 | 6.4 | 25.7 | 6,950 | 36.5 |
| 12/01/2012 | 6.48 | 25.8 | 6,620 | 31.7 |
| 17/01/2012 | 6.51 | 26.1 | 6,630 | 29.8 |
| 19/01/2012 | 6.46 | 27.6 | 6,530 | 32.9 |
| 24/01/2012 | 6.36 | 26.2 | 6,780 | 38.9 |
| 31/01/2012 | 6.54 | 26.2 | 6,900 | 28.1 |
| 2/02/2012 | 6.64 | 27.7 | 6,840 | 22.6 |
| 6/02/2012 | 6.59 | 26.8 | 6960 | 25 |
| 9/02/2012 | 6.6 | 28.3 | 7190 | 25 |
| 14/02/2012 | 6.63 | 28.3 | 6890 | 23 |
| 16/02/2012 | 6.64 | 29.7 | 7040 | 23 |
| 21/02/2012 | 6.65 | 30.3 | 7070 | 22 |
| 23/02/2012 | 6.6 | 29.5 | 7100 | 25 |
| 28/02/2012 | 6.62 | 32.5 | 7010 | 24 |
| 1/03/2012 | 6.61 | 31.9 | 7050 | 25 |
| 8/03/2012 | 6.59 | 31.7 | 7180 | 26 |
| 13/03/2012 | 6.62 | 30.3 | 7680 | 24 |
| 15/03/2012 | 6.64 | 28.8 | 7910 | 23 |
| 20/03/2012 | 6.52 | 29.4 | 8210 | 30 |
| 22/03/2012 | 6.53 | 29.7 | 8590 | 29 |
| 27/03/2012 | 6.59 | 27.9 | 8910 | 25 |
| 29/03/2012 | 6.53 | 29.1 | 9340 | 29 |
| 3/04/2012 | 6.64 | 28.5 | 9280 | 23 |
| 19/04/2012 | 6.7 | 27.5 | 9050 | 19 |
| 24/04/2012 | 6.72 | 25.2 | 9170 | 18 |
| 26/04/2012 | 6.71 | 22.3 | 9120 | 18 |
| 1/05/2012 | 6.72 | 24.4 | 9160 | 18 |
| 3/05/2012 | 6.91 | 24.5 | 9450 | 7 |
| 8/05/2012 | 6.83 | 22.8 | 8690 | 11 |
| 10/05/2012 | 6.73 | 27.4 | 8140 | 17 |
| 15/05/2012 | 6.75 | 21.6 | 7580 | 16 |
| 17/05/2012 | 6.74 | 22.6 | 7330 | 15 |
| 22/05/2012 | 6.79 | 22.8 | 7420 | 14 |
| 24/05/2012 | 6.83 | 23.5 | 6890 | 11 |
| 29/05/2012 | 6.88 | 22.6 | 7580 | 8 |
| 31/05/2012 | 6.84 | 23.2 | 7590 | 11 |
| 5/06/2012 | 6.95 | 22.9 | 7380 | 12 |
| 12/06/2012 | 6.99 | 22.6 | 7690 | 10 |
| 14/06/2012 | 6.98 | 21.7 | 7280 | 10 |
| 19/06/2012 | 6.99 | 23.7 | 6700 | 10 |
| 21/06/2012 | 7 | 21.6 | 6320 | 9 |
| 26/06/2012 | 7.02 | 23.8 | 6510 | 8 |
| 28/06/2012 | 7.01 | 22.5 | 6140 | 9 |
| 3/07/2012 | 7.05 | 24.1 | 6080 | 6 |
| 5/07/2012 | 6.9 | 24.1 | 5870 | 15 |

Table 15: CAL Feed - Laboratory Analysis

| Date | $\begin{aligned} & \text { COD } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$ | $\begin{gathered} \mathrm{BOD}_{5} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{aligned} & \text { O\&G } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$ | $\begin{gathered} \text { TSS } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} \mathrm{NH}_{3} \text { as } \mathrm{N} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} \text { TKN as N } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15/12/2011 | 2,400 | 700 | 80 | 970 | 36 | 39 |
| 21/12/2011 | 2,200 | 660 | 180 | 700 |  |  |
| 28/12/2011 | 3,500 | 1,900 | 300 | 1100 | 25 | 160 |
| 4/01/2012 | 4,600 | 1,500 |  |  |  |  |
| 5/01/2012 | 4,500 | 2,300 | 630 | 1700 |  |  |
| 10/01/2012 | 2,700 | 750 |  |  |  |  |
| 12/01/2012 | 13,000 | 5,200 | 100 | 2000 | 36 | 1000 |
| 17/01/2012 | 7,600 | 2,100 |  |  |  |  |
| 19/01/2012 | 2,800 | 1,000 | 160 | 800 | 28 | 130 |
| 24/01/2012 | 3,700 | 1,200 | 92 | 2300 | 140 | 320 |
| 31/01/2012 | 2,700 | 1,100 |  |  |  |  |
| 2/02/2012 | 7,800 | 2,100 | 370 | 2200 |  |  |
| 9/02/2012 | 4400 | 2,000 | 100 | 3100 | 92 | 310 |
| 14/02/2012 | 3100 |  |  |  |  |  |
| 16/02/2012 | 3000 | 980 | 120 | 1100 |  |  |
| 21/02/2012 | 2200 |  |  |  |  |  |
| 23/02/2012 | 9500 | 4,900 | 220 | 4400 | 150 | 350 |
| 28/02/2012 | 3300 |  |  |  |  |  |
| 1/03/2012 | 9800 | 3,400 | 260 | 1600 |  |  |
| 8/03/2012 | 2800 | 450 | 120 | 880 | 29 | 150 |
| 13/03/2012 | 7100 |  |  |  |  |  |
| 15/03/2012 | 2900 |  |  |  |  |  |
| 20/03/2012 | 4000 |  |  |  |  |  |
| 22/03/2012 | 9800 | 3,400 | 460 | 560 | 110 | 410 |
| 27/03/2012 | 4600 |  |  |  |  |  |
| 29/03/2012 | 7400 |  |  |  |  |  |
| 3/04/2012 | 5400 | 1,900 | 94 | 990 | 59 | 450 |
| 19/04/2012 | 11000 | 3,500 | 220 | 3100 | 78 | 720 |
| 24/04/2012 | 4400 |  |  |  |  |  |
| 26/04/2012 | 4200 |  |  |  |  |  |
| 1/05/2012 | 8200 |  |  |  |  |  |
| 3/05/2012 | 4100 | 1,400 | 270 | 1400 | 49 | 190 |
| 8/05/2012 | 4000 |  |  |  |  |  |
| 10/05/2012 | 2300 |  |  |  |  |  |
| 15/05/2012 | 3800 |  |  |  |  |  |
| 17/05/2012 | 3500 | 840 | 40 | 1400 | 90 | 230 |
| 22/05/2012 | 4300 |  |  |  |  |  |
| 24/05/2012 | 5500 |  |  |  |  |  |
| 29/05/2012 | 1700 |  |  |  |  |  |
| 31/05/2012 | 4200 | 1,400 | 40 | 1900 | 42 | 180 |
| 5/06/2012 | 5112 | 1,364 | 177 | 2233 | 38 | 234 |
| 7/06/2012 | 2500 |  |  |  |  |  |
| 12/06/2012 | 2300 |  |  |  |  |  |
| 14/06/2012 | 4400 | 1,800 | 88 | 1800 | 27 | 240 |
| 19/06/2012 | 1600 |  |  |  |  |  |
| 21/06/2012 | 4000 |  |  |  |  |  |
| 26/06/2012 | 4900 |  |  |  |  |  |
| 28/06/2012 | 2900 | 940 | 200 | 1100 | 25 | 130 |
| 3/07/2012 | 3100 |  |  |  |  |  |
| 5/07/2012 | 2400 | 660 | 110 | 1100 | 73 | 180 |

Table 16: CAL Discharge - Laboratory Analysis

| Date | $\begin{aligned} & \text { COD } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$ | $\begin{gathered} \mathrm{BOD}_{5} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} \text { O\&G } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} \mathrm{TSS} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | $\begin{gathered} \mathrm{NH}_{3} \text { as } \mathrm{N} \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | TKN as N (mg/L) | $\begin{gathered} \text { VFA } \\ (\mathrm{mg} / \mathrm{L}) \end{gathered}$ | TA as $\mathrm{CaCO}_{3}$ (mg/L) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15/12/2011 | 2800 | 780 | 65 | 340 | 120 | 160 | 540 | 880 |
| 21/12/2011 | 1700 | 720 | 35 | 330 |  |  | 690 | 890 |
| 28/12/2011 | 2000 | 1100 | 39 | 260 | 150 | 180 | 740 | 750 |
| 4/01/2012 | 2400 | 930 |  |  |  |  |  |  |
| 5/01/2012 | 2100 | 870 | 39 | 310 |  |  | 1100 | 1000 |
| 10/01/2012 | 2400 | 980 |  |  |  |  |  |  |
| 12/01/2012 | 2300 | 1000 | 65 | 380 | 200 | 240 | 770 | 1000 |
| 17/01/2012 | 2400 | 1000 |  |  |  |  |  |  |
| 19/01/2012 | 2400 | 1600 | 52 | 300 | 210 | 250 | 680 | 560 |
| 24/01/2012 | 2500 | 1400 | 44 | 400 | 220 | 260 | 740 | 1100 |
| 31/01/2012 | 2500 |  |  |  |  |  |  |  |
| 2/02/2012 | 2200 | 780 | 36 | 510 |  |  | 730 | 660 |
| 9/02/2012 | 2300 | 780 | 76 | 410 | 210 | 270 | 540 | 720 |
| 14/02/2012 | 2200 |  |  |  |  |  |  |  |
| 16/02/2012 | 2300 | 740 | 72 | 500 |  |  | 390 | 790 |
| 21/02/2012 | 2100 |  |  |  |  |  |  |  |
| 23/02/2012 | 2200 | 960 | <40 | 410 | 230 | 280 | 550 | 1200 |
| 28/02/2012 | 2200 |  |  |  |  |  |  |  |
| 1/03/2012 | 2100 | 820 | <40 | 440 |  |  | 470 | 770 |
| 8/03/2012 | 1700 | 540 | 72 | 420 | 210 | 250 | 610 | 1200 |
| 13/03/2012 | 2200 |  |  |  |  |  |  |  |
| 15/03/2012 | 2100 |  |  |  |  |  | 560 | 1100 |
| 20/03/2012 | 2400 |  |  |  |  |  |  |  |
| 22/03/2012 | 3500 | 890 | 75 | 1300 | 200 | 250 | 660 | 1100 |
| 27/03/2012 | 2500 |  |  |  |  |  |  |  |
| 29/03/2012 | 2800 |  |  |  |  |  | 900 | 1200 |
| 3/04/2012 | 2900 | 1000 | 82 | 870 | 260 | 300 | 720 | 910 |
| 19/04/2012 | 2300 | 780 | 44 | 550 | 300 | 360 | 770 | 1100 |
| 24/04/2012 | 2600 |  |  |  |  |  |  |  |
| 26/04/2012 | 3200 |  |  |  |  |  | 720 | 1000 |
| 1/05/2012 | 3000 |  |  |  |  |  |  |  |
| 3/05/2012 | 2700 | 840 | 64 | 730 | 290 | 330 | 640 | 980 |
| 8/05/2012 | 2200 |  |  |  |  |  |  |  |
| 10/05/2012 | 1900 |  |  |  |  |  | 480 | 960 |
| 15/05/2012 | 2100 |  |  |  |  |  |  |  |
| 17/05/2012 | 2000 | 570 | 56 | 560 | 250 | 300 | 410 | 1100 |
| 22/05/2012 | 1700 |  |  |  |  |  |  |  |
| 24/05/2012 | 1900 |  |  |  |  |  | 400 | 1400 |
| 29/05/2012 | 1200 |  |  |  |  |  |  |  |
| 31/05/2012 | 1500 | 330 | 62 | 530 | 200 | 240 | 220 | 1300 |
| 5/06/2012 | 1100 | 200 | <40 | 420 | 190 | 230 |  |  |
| 12/06/2012 | 1100 |  |  |  |  |  |  |  |
| 14/06/2012 | 960 | 200 | <40 | 300 | 180 | 220 | 230 | 1200 |
| 19/06/2012 | 1200 |  |  |  |  |  |  |  |
| 21/06/2012 | 1400 |  |  |  |  |  | 230 | 1200 |
| 26/06/2012 | 840 |  |  |  |  |  |  |  |
| 28/06/2012 | 1100 | 200 | <40 | 320 | 190 | 220 | 130 | 1100 |
| 3/07/2012 | 950 |  |  |  |  |  |  |  |
| 5/07/2012 | 1000 | 230 | <40 | 260 | 190 | 230 | 150 | 1200 |

Table 17: Biogas Methane Concentration - read manually from daily charts

| Date | Min | Max | Comment | Date | Min | Max | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/02/2012 | 62 | 65 |  | 18/03/2012 | 19 | 61 |  |
| 8/02/2012 | 62 | 64 |  | 19/03/2012 | 21 | 67 |  |
| 9/02/2012 | 62 | 64 |  | 20/03/2012 | 25 | 60 |  |
| 10/02/2012 | 62 | 63 |  | 21/03/2012 |  |  | No Meter |
| 11/02/2012 | 61 | 71 |  | 22/03/2012 |  |  | No Meter |
| 12/02/2012 | 70 | 76 |  | 23/03/2012 |  |  | No Meter |
| 13/02/2012 | 69 | 72 |  | 24/03/2012 |  |  | No Flow |
| 14/02/2012 | 63 | 65 |  | 25/03/2012 |  |  | No Flow |
| 15/02/2012 |  |  | No Meter | 26/03/2012 |  |  | No Flow |
| 16/02/2012 | 62 | 63 |  | 27/03/2012 |  |  | No Meter |
| 17/02/2012 | 63 | 63 |  | 28/03/2012 | 63 | 66 |  |
| 18/02/2012 | 64 | 66 |  | 29/03/2012 | 26 | 67 |  |
| 19/02/2012 | 67 | 69 |  | 30/03/2012 | 64 | 66 |  |
| 20/02/2012 | 65 | 67 |  | 31/03/2012 | 66 | 68 |  |
| 21/02/2012 | 65 | 66 |  | 1/04/2012 |  |  | No Flow |
| 22/02/2012 | 65 | 67 |  | 2/04/2012 | 67 | 68 |  |
| 23/02/2012 | 65 | 66 |  | 3/04/2012 | 63 | 68 |  |
| 24/02/2012 | 64 | 65 |  | 4/04/2012 | 60 | 68 |  |
| 25/02/2012 |  |  | No Meter | 5/04/2012 | 67 | 70 |  |
| 26/02/2012 |  |  | No Meter | 6/04/2012 | 67 | 70 |  |
| 27/02/2012 | 66 | 67 |  | 7/04/2012 |  |  | No Flow |
| 28/02/2012 | 65 | 68 |  | 8/04/2012 |  |  | No Flow |
| 29/02/2012 | 60 | 68 |  | 9/04/2012 |  |  | No Flow |
| 1/03/2012 | 64 | 67 |  | 10/04/2012 | 74 | 75 |  |
| 2/03/2012 | 63 | 67 |  | 11/04/2012 | 75 | 78 |  |
| 3/03/2012 | 62 | 67 |  | 12/04/2012 | 60 | 77 |  |
| 4/03/2012 |  |  |  | 13/04/2012 | 70 | 78 |  |
| 5/03/2012 |  |  | No Meter | 14/04/2012 | 72 | 76 |  |
| 6/03/2012 | 66 | 70 |  | 15/04/2012 | 74 | 78 |  |
| 7/03/2012 | 70 | 71 |  | 16/04/2012 | 67 | 77 |  |
| 8/03/2012 |  |  | No Meter | 17/04/2012 | 62 | 74 |  |
| 9/03/2012 | 64 | 65 |  | 18/04/2012 | 65 | 67 |  |
| 10/03/2012 | 63 | 68 |  | 19/04/2012 | 61 | 70 |  |
| 11/03/2012 | 68 | 70 |  | 20/04/2012 | 64 | 71 |  |
| 12/03/2012 | 70 | 71 |  | 21/04/2012 | 67 | 71 |  |
| 13/03/2012 | 54 | 71 |  | 22/04/2012 | 68 | 70 |  |
| 14/03/2012 | 51 | 67 |  | 23/04/2012 | 50 | 68 |  |
| 15/03/2012 | 42 | 60 |  | 24/04/2012 | 54 | 69 |  |
| 16/03/2012 | 44 | 66 |  | 25/04/2012 | 69 | 74 |  |
| 17/03/2012 |  |  | No Flow | 26/04/2012 | 64 | 74 |  |
|  |  |  |  | 27/04/2012 | 59 | 71 |  |

Table 18: Biogas Methane Concentration - calculated from SCADA data

| Date | 10\%ile | 90\%ile | 50\%ile | Date | 10\%ile | 90\%ile | 50\%ile |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28/04/2012 | 68 | 70 | 69 | 3/06/2012 | 66 | 73 | 70 |
| 29/04/2012 |  |  |  | 4/06/2012 | 62 | 72 | 68 |
| 30/04/2012 | 70 | 74 | 72 | 5/06/2012 | 66 | 74 | 72 |
| 1/05/2012 | 64 | 70 | 69 | 6/06/2012 | 67 | 75 | 71 |
| 2/05/2012 | 63 | 73 | 70 | 7/06/2012 | 66 | 75 | 71 |
| 3/05/2012 | 65 | 72 | 70 | 8/06/2012 | 70 | 74 | 74 |
| 4/05/2012 | 61 | 69 | 66 | 9/06/2012 |  |  |  |
| 5/05/2012 | 71 | 74 | 73 | 10/06/2012 |  |  |  |
| 6/05/2012 | 73 | 75 | 74 | 11/06/2012 |  |  |  |
| 7/05/2012 | 63 | 74 | 73 | 12/06/2012 |  |  |  |
| 8/05/2012 | 61 | 71 | 68 | 13/06/2012 |  |  |  |
| 9/05/2012 | 65 | 72 | 70 | 14/06/2012 |  |  |  |
| 10/05/2012 | 66 | 73 | 69 | 15/06/2012 |  |  |  |
| 11/05/2012 | 65 | 71 | 70 | 16/06/2012 | 67 | 69 | 67 |
| 12/05/2012 | 66 | 72 | 72 | 17/06/2012 | 69 | 72 | 70 |
| 13/05/2012 | 69 | 74 | 74 | 18/06/2012 | 65 | 71 | 66 |
| 14/05/2012 | 71 | 74 | 74 | 19/06/2012 | 67 | 69 | 67 |
| 15/05/2012 | 69 | 75 | 74 | 20/06/2012 | 62 | 70 | 66 |
| 16/05/2012 | 71 | 74 | 72 | 21/06/2012 | 64 | 70 | 65.5 |
| 17/05/2012 | 71 | 74 | 72 | 22/06/2012 | 66 | 70 | 68 |
| 18/05/2012 | 68 | 72 | 70 | 23/06/2012 | 67 | 70 | 69 |
| 19/05/2012 | 71 | 73 | 72 | 24/06/2012 | 71 | 72 | 71 |
| 20/05/2012 | 72 | 73 | 72 | 25/06/2012 | 64 | 71 | 70 |
| 21/05/2012 | 64 | 72 | 70 | 26/06/2012 | 70 | 74 | 71 |
| 22/05/2012 | 67 | 72 | 68 | 27/06/2012 | 68 | 70 | 68 |
| 23/05/2012 | 66 | 70 | 69 | 28/06/2012 | 64 | 69 | 66 |
| 24/05/2012 | 68 | 74 | 71 | 29/06/2012 | 61 | 69 | 65 |
| 25/05/2012 | 64 | 72 | 70 | 30/06/2012 | 66 | 68 | 66 |
| 26/05/2012 | 72 | 74 | 73 | 1/07/2012 |  |  |  |
| 27/05/2012 | 73 | 75 | 74 | 2/07/2012 | 62 | 69 | 67 |
| 28/05/2012 | 68 | 75 | 74 | 3/07/2012 | 66 | 71 | 67 |
| 29/05/2012 | 66 | 75 | 71 | 4/07/2012 | 66 | 71 | 69 |
| 30/05/2012 | 68 | 76 | 73 | 5/07/2012 | 69 | 72 | 70 |
| 31/05/2012 | 66 | 75 | 72 | 6/07/2012 | 66 | 72 | 70 |
| 1/06/2012 | 67 | 74 | 71 | 7/07/2012 | 70 | 72 | 71 |
| 2/06/2012 | 73 | 74 | 73 | 8/07/2012 | 70 | 72 | 71 |

Table 19: Biogas Flow

| Date | Raw Flowrate (kL/d) | Smoothed <br> Flowrate <br> (kL/d) | Date | Raw Flowrate (kL/d) | Smoothed <br> Flowrate <br> (kL/d) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8/02/2012 | 552 | 552 | 17/03/2012 | 0 |  |
| 9/02/2012 |  |  | 18/03/2012 | 384 |  |
| 10/02/2012 | 237 | 237 | 19/03/2012 | 532 |  |
| 11/02/2012 | 213 | 213 | 20/03/2012 | 1053 | 492 |
| 12/02/2012 | 174 | 174 | 21/03/2012 | 603 | 603 |
| 13/02/2012 | 94 | 94 | 22/03/2012 | 627 | 627 |
| 14/02/2012 | 192 | 192 | 23/03/2012 |  |  |
| 15/02/2012 | 0 |  | 24/03/2012 |  |  |
| 16/02/2012 | 260 | 130 | 25/03/2012 |  |  |
| 17/02/2012 | 158 | 158 | 26/03/2012 |  |  |
| 18/02/2012 | 341 | 341 | 27/03/2012 |  |  |
| 19/02/2012 | 314 | 314 | 28/03/2012 | 346 | 346 |
| 20/02/2012 | 207 | 207 | 29/03/2012 | 491 | 491 |
| 21/02/2012 | 105 | 105 | 30/03/2012 | 733 | 733 |
| 22/02/2012 | 274 | 274 | 31/03/2012 | 621 | 621 |
| 23/02/2012 | 402 | 402 | 1/04/2012 | 0 |  |
| 24/02/2012 | 160 | 160 | 2/04/2012 | 583 |  |
| 25/02/2012 | 0 |  | 3/04/2012 | 904 | 496 |
| 26/02/2012 | 0 |  | 4/04/2012 | 627 | 627 |
| 27/02/2012 | 463 |  | 5/04/2012 | 510 | 510 |
| 28/02/2012 | 725 | 297 | 6/04/2012 | 391 | 391 |
| 29/02/2012 | 1024 | 1024 | 7/04/2012 | 0 |  |
| 1/03/2012 | 901 | 901 | 8/04/2012 | 0 |  |
| 2/03/2012 | 730 | 730 | 9/04/2012 | 0 |  |
| 3/03/2012 | 364 | 364 | 10/04/2012 | 828 |  |
| 4/03/2012 | 0 |  | 11/04/2012 | 980 | 362 |
| 5/03/2012 | 758 | 379 | 12/04/2012 | 413 | 413 |
| 6/03/2012 | 553 | 553 | 13/04/2012 | 300 | 300 |
| 7/03/2012 | 277 | 277 | 14/04/2012 | 271 | 271 |
| 8/03/2012 | 237 | 237 | 15/04/2012 | 201 | 201 |
| 9/03/2012 | 585 | 585 | 16/04/2012 | 279 | 279 |
| 10/03/2012 | 383 | 383 | 17/04/2012 | 303 | 303 |
| 11/03/2012 | 390 | 390 | 18/04/2012 | 461 | 461 |
| 12/03/2012 | 391 | 391 | 19/04/2012 | 517 | 517 |
| 13/03/2012 | 388 | 388 | 20/04/2012 | 404 | 404 |
| 14/03/2012 | 459 | 459 | 21/04/2012 | 494 | 494 |
| 15/03/2012 | 463 | 463 | 22/04/2012 | 295 | 295 |
| 16/03/2012 | 291 | 291 | 23/04/2012 | 595 | 595 |

Table 19: Biogas Flow continued

| Date | Raw Flowrate (kL/d) | Smoothed Flowrate (kL/d) |
| :---: | :---: | :---: |
| 24/04/2012 | 518 | 518 |
| 25/04/2012 | 327 | 327 |
| 26/04/2012 | 372 | 372 |
| 27/04/2012 | 466 | 466 |
| 28/04/2012 | 77 |  |
| 29/04/2012 | 0 |  |
| 30/04/2012 | 796 |  |
| 1/05/2012 | 973 | 461 |
| 2/05/2012 | 481 | 481 |
| 3/05/2012 | 547 | 547 |
| 4/05/2012 | 541 | 541 |
| 5/05/2012 | 531 | 531 |
| 6/05/2012 | 524 | 524 |
| 7/05/2012 | 550 | 550 |
| 8/05/2012 | 614 | 614 |
| 9/05/2012 | 662 | 662 |
| 10/05/2012 | 672 | 672 |
| 11/05/2012 | 756 | 756 |
| 12/05/2012 | 504 | 504 |
| 13/05/2012 | 656 | 656 |
| 14/05/2012 | 872 | 872 |
| 15/05/2012 | 670 | 670 |
| 16/05/2012 | 741 | 741 |
| 17/05/2012 | 787 | 787 |
| 18/05/2012 | 877 | 877 |
| 19/05/2012 | 804 | 804 |
| 20/05/2012 | 793 | 793 |
| 21/05/2012 | 710 | 710 |
| 22/05/2012 | 833 | 833 |
| 23/05/2012 | 1017 | 1017 |
| 24/05/2012 | 787 | 787 |
| 25/05/2012 | 1004 | 1004 |
| 26/05/2012 | 814 | 814 |
| 27/05/2012 | 765 | 765 |
| 28/05/2012 | 656 | 656 |
| 29/05/2012 | 736 | 736 |
| 30/05/2012 | 759 | 759 |
| 31/05/2012 | 826 | 826 |


| Date | Raw Flowrate (kL/d) | Smoothed Flowrate (kL/d) |
| :---: | :---: | :---: |
| 1/06/2012 | 818 | 818 |
| 2/06/2012 | 859 | 859 |
| 3/06/2012 | 674 | 674 |
| 4/06/2012 | 285 |  |
| 5/06/2012 | 504 | 504 |
| 6/06/2012 | 641 | 641 |
| 7/06/2012 | 687 | 687 |
| 8/06/2012 | 227 |  |
| 9/06/2012 | 143 |  |
| 10/06/2012 | 84 |  |
| 11/06/2012 | 25 |  |
| 12/06/2012 | 67 |  |
| 13/06/2012 | 30 |  |
| 14/06/2012 | 59 |  |
| 15/06/2012 | 565 |  |
| 16/06/2012 | 1196 |  |
| 17/06/2012 | 692 | 692 |
| 18/06/2012 | 745 | 745 |
| 19/06/2012 | 107 |  |
| 20/06/2012 | 863 | 863 |
| 21/06/2012 | 760 | 760 |
| 22/06/2012 | 583 | 583 |
| 23/06/2012 | 903 | 903 |
| 24/06/2012 | 544 | 544 |
| 25/06/2012 | 756 | 756 |
| 26/06/2012 | 312 |  |
| 27/06/2012 | 785 |  |
| 28/06/2012 | 1126 |  |
| 29/06/2012 | 904 | 782 |
| 30/06/2012 | 677 | 677 |
| 1/07/2012 |  |  |
| 2/07/2012 | 739 | 739 |
| 3/07/2012 | 670 | 670 |
| 4/07/2012 | 804 | 804 |
| 5/07/2012 | 722 | 722 |
| 6/07/2012 | 1123 | 1123 |
| 7/07/2012 | 959 | 959 |
| 8/07/2012 | 757 | 757 |

Table 20: Analysis of individual samples collected over $5^{\text {th }}$ June 2012 production day

| Time |  | $\mathbf{7 : 0 0}$ | $\mathbf{9 : 0 0}$ | $\mathbf{1 1 : 0 0}$ | $\mathbf{1 3 : 0 0}$ | $\mathbf{1 5 : 0 0}$ | $\mathbf{1 7 : 0 0}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BOD | $\mathrm{mg} / \mathrm{L}$ | 1200 | 810 | 1900 | 720 | 1200 | 1200 |
| TSS | $\mathrm{mg} / \mathrm{L}$ | 1900 | 580 | 3600 | 1500 | 1200 | 1300 |
| $\mathbf{p H}$ |  | 7.9 | 7.9 | 7.3 | 8.7 | 8.0 | 8.6 |
| COD | $\mathrm{mg} / \mathrm{L}$ | 4100 | 2200 | 7900 | 3300 | 3000 | 3900 |
| $\mathbf{N H 3}$ | $\mathrm{mg} / \mathrm{L}$ | 60 | 28 | 29 | 67 | 24 | 28 |
| TKN | $\mathrm{mg} / \mathrm{L}$ | 200 | 150 | 290 | 200 | 140 | 360 |
| $\mathbf{O \& G}$ | $\mathrm{mg} / \mathrm{L}$ | 190 | 80 | 240 | 68 | 260 | $<40$ |
| pH |  | 8.08 | 8.12 | 7 | 8 | 8.31 | 8.57 |
| Temp |  | 23.9 | 35.9 | 30 | 36 | 36.6 | 30.9 |
| Cond | $\mathrm{mS} / \mathrm{cm}$ | 23.0 | 5.37 | 2.91 | 4.94 | 3.09 | 2.26 |

Table 21: Field Analysis 1 hourly sampling of $5^{\text {th }}$ June 2012

| Time | ID | Cum <br> Flow (L) |  |  | pH | Cond. <br> $(\mathrm{mS} / \mathrm{cm})$ | Temp <br> $\left({ }^{\circ} \mathrm{C}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |

Table 22: GCMS Laboratory Analysis of Biogas sampled on the $6^{\text {th }}$ June 2012

| Test Item | unit | Sample 1 <br> at 8am | Sample 2 at <br> 11:55am |
| :--- | :--- | :---: | ---: |
| $\mathbf{C H}_{\mathbf{4}}$ | $\%$ | 59.5 | 45.6 |
| $\mathbf{C O}_{\mathbf{2}}$ | $\%$ | 29.1 | 23.6 |
| $\mathbf{O}_{\mathbf{2}}$ | $\%$ | 2.43 | 6.59 |
| $\mathbf{N H}_{\mathbf{3}}$ | ppm | $<0.1$ | 0.1 |
| $\mathbf{N O ~ \& ~ N O}_{\mathbf{2}}$ | ppm | $<0.5$ | 0.5 |
| $\mathbf{N}_{\mathbf{2}} \mathbf{O}$ | ppm | $<5$ | 5 |
| $\mathbf{V P H}$ | $\mathrm{ppm} \mathrm{v} / \mathrm{v}$ | $<1$ | 1 |
| $\mathbf{B T E X}$ | ppm | 20 | 16 |
| $\mathbf{C O}$ | ppm | $<1$ | 1 |
| $\mathbf{H}_{\mathbf{2}} \mathbf{S}$ | ppm | 2749 | 254 |
| $\mathbf{S O}_{\mathbf{2}}$ | ppm | 1 | 1 |
| Total VFA | ppm | 0.025 | 0.016 |
| Balance ( $\mathbf{N}_{\mathbf{2}}$ and $\mathbf{A r}$ ) | $\%$ | 9.0 | 24.3 |

Table 23: CAL Crust analysis from 5 June samples

|  |  | Screen <br> port | Flare <br> port |
| :--- | :---: | :---: | :---: |
| TS | \%w/w RB | 13 | 10.9 |
| Fixed TS | \%w/w DB | 14.9 | 17.6 |
| Org. TS | \%w/w DB | 85.1 | 82.4 |
| TKN | $\mathrm{mg} / \mathrm{kg} \mathrm{DB}$ | 14,000 | 32,000 |
| $\mathbf{N O}_{\mathbf{2}}$ as $\mathbf{N}$ | $\mathrm{mg} / \mathrm{kg} \mathrm{DB}$ | $<250$ | $<250$ |
| $\mathbf{N O}_{\mathbf{3}}$ as $\mathbf{N}$ | $\mathrm{mg} / \mathrm{kg} \mathrm{DB}$ | $<5$ | $<5$ |
| TN as $\mathbf{N}$ | $\mathrm{mg} / \mathrm{kg} \mathrm{DB}$ |  |  |
| TP as $\mathbf{P}$ | $\mathrm{mg} / \mathrm{kg} \mathrm{DB}$ | 2,500 | 4,400 |
| $\mathbf{O \& G}$ | $\mathrm{mg} / \mathrm{kg} \mathrm{DB}$ | 24,000 | 25,000 |

Table 24: CAL sludge analysis from 5 June samples

|  |  | CAL <br> Sludge A | CAL <br> Sludge B | CAL Sludge C | CAL Sludge D |
| :---: | :---: | :---: | :---: | :---: | :---: |
| TS | \%w/w RB | 2.65 | 2.39 | 2.38 | 2.22 |
| Fixed TS | \%w/w DB | 30.4 | 29.8 | 30.8 | 30.8 |
| Org. TS | \%w/w DB | 69.6 | 70.2 | 69.2 | 69.2 |
| TKN | $\mathrm{mg} / \mathrm{kg}$ DB | 49,000 | 45,000 | 55,000 | 52,000 |
| $\mathrm{NO}_{2}$ as N | $\mathrm{mg} / \mathrm{kg}$ DB | <250 | <250 | <250 | <250 |
| $\mathrm{NO}_{3}$ as N | $\mathrm{mg} / \mathrm{kg}$ DB | <5 | <5 | <5 | <5 |
| TN as N | $\mathrm{mg} / \mathrm{kg}$ DB | 49,000 | 45,000 |  |  |
| TP as P | $\mathrm{mg} / \mathrm{kg}$ DB | 7,600 | 7,000 | 7,300 | 8,300 |
| O\&G | $\mathrm{mg} / \mathrm{kg}$ DB |  |  |  |  |
| TDS | mg/L | 4,400 | 4,500 | 4,400 | 4,400 |


[^0]:    This publication is published by Meat \& Livestock Australia Limited ABN 39081678364 (MLA). Care is taken to ensure the accuracy of the information contained in this publication. However MLA cannot accept responsibility for the accuracy or completeness of the information or opinions contained in the publication. You should make your own enquiries before making decisions concerning your interests. Reproduction in whole or in part of this publication is prohibited without prior written consent of MLA.

